Cho hai biểu thức \(A\) và \(B\) thỏa mãn \(45{x^6}{y^3}:A = 5{x^3}{y^2}\) và \(\left( {B + 7{x^4}{y^2}} \right):A = 3x{y^2} + 2xy.\)
a) Biểu thức \(A\) là đơn thức bậc 3.
b) Với \(x = - 1\,;\,\,y = 2\) thì giá trị của biểu thức \(A\) bằng \( - 18.\)
c) Đa thức \(B\) có hai hạng tử.
d) Tích của hai biểu thức \(A\) và \(B\) là \(36{x^7}{y^5} + 20{x^7}{y^3}.\)
Cho hai biểu thức \(A\) và \(B\) thỏa mãn \(45{x^6}{y^3}:A = 5{x^3}{y^2}\) và \(\left( {B + 7{x^4}{y^2}} \right):A = 3x{y^2} + 2xy.\)
a) Biểu thức \(A\) là đơn thức bậc 3.
b) Với \(x = - 1\,;\,\,y = 2\) thì giá trị của biểu thức \(A\) bằng \( - 18.\)
c) Đa thức \(B\) có hai hạng tử.
d) Tích của hai biểu thức \(A\) và \(B\) là \(36{x^7}{y^5} + 20{x^7}{y^3}.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án: a) Sai. b) Đúng. c) Đúng. d) Sai.
⦁ Ta có \(45{x^6}{y^3}:A = 5x{y^2}\).
Suy ra \(A = 45{x^6}{y^3}:5{x^3}{y^2} = 9{x^3}y\).
Như vậy, biểu thức \(A\) là đơn thức bậc 4. Do đó ý a) sai.
⦁ Thay \(x = - 1\,;\,\,y = 2\) vào biểu thức \(A\), ta có: \(A = 9 \cdot {\left( { - 1} \right)^3} \cdot 2 = - 9 \cdot 2 = - 18.\)
Vậy với \(x = - 1\,;\,\,y = 2\) thì \(A = - 18\). Do đó ý b) đúng.
⦁ Với \(A = 9{x^3}y\), ta có \(\left( {B + 7{x^4}{y^2}} \right):9{x^3}y = 3x{y^2} + 2xy\)
Suy ra \(B + 7{x^4}{y^2} = 9{x^3}y\left( {3x{y^2} + 2xy} \right) = 27{x^4}{y^4} + 18{x^4}{y^2}.\)
Do đó \(B = 27{x^4}{y^4} + 18{x^4}{y^2} - 7{x^4}{y^2} = 27{x^4}{y^4} + 11{x^4}{y^2}\).
Như vậy, đa thức \(B\) có hai hạng tử là \(27{x^4}{y^4}\) và \(11{x^4}{y^2}\). Do đó ý c) đúng.
⦁ Ta có \(A \cdot B = 9{x^3}y \cdot \left( {27{x^4}{y^4} + 11{x^4}{y^2}} \right)\)
\( = 9{x^3}y \cdot 27{x^4}{y^4} + 9{x^3}y \cdot 11{x^4}{y^2}\)
\( = 243{x^7}{y^5} + 99{x^7}{y^3}.\)
Như vậy, tích của hai biểu thức \(A\) và \(B\) là \(243{x^7}{y^5} + 99{x^7}{y^3}.\) Do đó ý d) sai.Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Diện tích đáy hình vuông của chiếc lều là:
Thể tích không khí bên trong chiếc lều là:
Chú ý: Có thể không cần bước tính diện tích đáy.
b) Diện tích xung quanh của chiếc lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08\;\;\left( {{{\rm{m}}^2}} \right)\)
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19,08 = 28,08\) (m2).
Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.
Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).
Lời giải
a) Số đo góc \(D\) ở đuôi chiếc diều là:
\(\widehat D = 360^\circ - \left( {\widehat {A\,\,} + \widehat {B\,} + \widehat {C\,}} \right) = 360^\circ - \left( {102^\circ + 102^\circ + 102^\circ } \right) = 54^\circ .\)
b) Xét \(\Delta OAD\) vuông tại \(O\), theo định lí Pythagore ta có:
\(O{A^2} = A{D^2} - O{D^2} = {30^2} - {26,7^2} = 187,11\)
Xét \(\Delta OAB\) vuông tại \(O,\) theo định lí Pythagore ta có:
\(O{B^2} = A{B^2} - O{A^2} = {17,5^2} - 187,11 = 119,14\)
Do đó \(OB = \sqrt {119,14} \approx 10,9\) (cm).
Suy ra \(BD = OB + OD \approx 10,9 + 26,7 = 37,6\) (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

