Câu hỏi:

19/08/2025 205 Lưu

Cho hai biểu thức \(A\) và \(B\) thỏa mãn \(45{x^6}{y^3}:A = 5{x^3}{y^2}\) và \(\left( {B + 7{x^4}{y^2}} \right):A = 3x{y^2} + 2xy.\)

a) Biểu thức \(A\) là đơn thức bậc 3.

b) Với \(x = - 1\,;\,\,y = 2\) thì giá trị của biểu thức \(A\) bằng \( - 18.\)

c) Đa thức \(B\) có hai hạng tử.

d) Tích của hai biểu thức \(A\) và \(B\) là \(36{x^7}{y^5} + 20{x^7}{y^3}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:      a) Sai.        b) Đúng.     c) Đúng.     d) Sai.

Ta có \(45{x^6}{y^3}:A = 5x{y^2}\).

Suy ra \(A = 45{x^6}{y^3}:5{x^3}{y^2} = 9{x^3}y\).

Như vậy, biểu thức \(A\) là đơn thức bậc 4. Do đó ý a) sai.

Thay \(x = - 1\,;\,\,y = 2\) vào biểu thức \(A\), ta có: \(A = 9 \cdot {\left( { - 1} \right)^3} \cdot 2 = - 9 \cdot 2 = - 18.\)

Vậy với \(x = - 1\,;\,\,y = 2\) thì \(A = - 18\). Do đó ý b) đúng.

Với \(A = 9{x^3}y\), ta có \(\left( {B + 7{x^4}{y^2}} \right):9{x^3}y = 3x{y^2} + 2xy\)

Suy ra \(B + 7{x^4}{y^2} = 9{x^3}y\left( {3x{y^2} + 2xy} \right) = 27{x^4}{y^4} + 18{x^4}{y^2}.\)

Do đó \(B = 27{x^4}{y^4} + 18{x^4}{y^2} - 7{x^4}{y^2} = 27{x^4}{y^4} + 11{x^4}{y^2}\).

Như vậy, đa thức \(B\) có hai hạng tử là \(27{x^4}{y^4}\) và \(11{x^4}{y^2}\). Do đó ý c) đúng.

Ta có \(A \cdot B = 9{x^3}y \cdot \left( {27{x^4}{y^4} + 11{x^4}{y^2}} \right)\)

\( = 9{x^3}y \cdot 27{x^4}{y^4} + 9{x^3}y \cdot 11{x^4}{y^2}\)

\( = 243{x^7}{y^5} + 99{x^7}{y^3}.\)

Như vậy, tích của hai biểu thức \(A\) và \(B\) là \(243{x^7}{y^5} + 99{x^7}{y^3}.\) Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Diện tích đáy hình vuông của chiếc lều là:

Thể tích không khí bên trong chiếc lều là:

Chú ý: Có thể không cần bước tính diện tích đáy.

b) Diện tích xung quanh của chiếc lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08\;\;\left( {{{\rm{m}}^2}} \right)\)

Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:

\(S = 9 + 19,08 = 28,08\) (m2).

Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.

Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\%  - 5\% } \right) = 400\,\,140\) (đồng).

Lời giải

Ta có:

\(M = {x^2} - 2x\left( {y + 1} \right) + 3{y^2} + 2025\)

\( = {x^2} - 2x\left( {y + 1} \right) + {\left( {y + 1} \right)^2} - \left( {{y^2} + 2y + 1} \right) + 3{y^2} + 2025\)

\( = {x^2} - 2x\left( {y + 1} \right) + {\left( {y + 1} \right)^2} + 2{y^2} - 2y + 2024\)

\( = \left[ {{x^2} - 2x\left( {y + 1} \right) + {{\left( {y + 1} \right)}^2}} \right] + 2\left( {{y^2} - y + \frac{1}{4}} \right) + 2024 - \frac{1}{2}\)

\( = {\left( {x - y - 1} \right)^2} + 2{\left( {y - \frac{1}{2}} \right)^2} + \frac{{4047}}{2}.\)

Nhận xét: với mọi \(x,y\) ta có:

• \({\left( {x - y - 1} \right)^2} \ge 0;\)

• \(2{\left( {y - \frac{1}{2}} \right)^2} \ge 0\)

Do đó \(M = {\left( {x - y - 1} \right)^2} + 2{\left( {y - \frac{1}{2}} \right)^2} + \frac{{4047}}{2} \ge \frac{{4047}}{2}\)

Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {x - y - 1} \right)^2} = 0\\2{\left( {y - \frac{1}{2}} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - y - 1 = 0\\y - \frac{1}{2} = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}x = \frac{3}{2}\\y = \frac{1}{2}\end{array} \right.\)

Vậy giá trị nhỏ nhất của biểu thức \(M\) là \(\frac{{4047}}{2}\) khi \(x = \frac{3}{2}\) và \(y = \frac{1}{2}.\)

Câu 5

A. \(6xy\left( {x - 2y} \right)\);     
B. \(6xy\left( {x - y} \right)\);        
C. \(6xy\left( {x + 2y} \right)\);         
D. \(6xy\left( {x + y} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(B < 0\);             
B. \(B = 0\);                 
C. \(B \ne 0\);       
D. \(B > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP