Câu hỏi:

19/08/2025 176 Lưu

Bạn Uyên dự định làm 4 hộp quà có dạng hình chóp tứ giác đều như hình bên có cạnh đáy \(6{\rm{ cm}}{\rm{,}}\) chiều cao của mặt bên xuất phát từ đỉnh là \(4{\rm{ cm}}{\rm{.}}\)

a) Mỗi hộp quà có 5 mặt.

b) Diện tích xung quanh của một hộp quà là \(48{\rm{ c}}{{\rm{m}}^2}\).

c) Diện tích các mặt của hộp quà \(60{\rm{ c}}{{\rm{m}}^2}\).

d) Diện tích giấy mà bạn Uyên cần dùng để làm 4 hộp quà \(240{\rm{ c}}{{\rm{m}}^2}.\)
Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

                   a) Đúng.    b) Đúng.     c) Sai.        d) Sai.

Mỗi hộp quà có 5 mặt gồm 4 mặt bên và 1 mặt đáy. Do đó ý a) đúng.

Diện tích xung quanh của một hộp quà là: \({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 6} \right) \cdot 4 = 48{\rm{\;}}\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý b) đúng.

Diện tích các mặt của hộp quà là:  Do đó ý c) sai.

Để làm 4 hộp quà bạn Uyên cần dùng diện tích giấy là: \(4 \cdot 84 = 336{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Diện tích đáy hình vuông của chiếc lều là:

Thể tích không khí bên trong chiếc lều là:

Chú ý: Có thể không cần bước tính diện tích đáy.

b) Diện tích xung quanh của chiếc lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08\;\;\left( {{{\rm{m}}^2}} \right)\)

Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:

\(S = 9 + 19,08 = 28,08\) (m2).

Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.

Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\%  - 5\% } \right) = 400\,\,140\) (đồng).

Lời giải

a) Số đo góc \(D\) ở đuôi chiếc diều là:

\(\widehat D = 360^\circ  - \left( {\widehat {A\,\,} + \widehat {B\,} + \widehat {C\,}} \right) = 360^\circ  - \left( {102^\circ  + 102^\circ  + 102^\circ } \right) = 54^\circ .\)

b) Xét \(\Delta OAD\) vuông tại \(O\), theo định lí Pythagore ta có:

\(O{A^2} = A{D^2} - O{D^2} = {30^2} - {26,7^2} = 187,11\)

Xét \(\Delta OAB\) vuông tại \(O,\) theo định lí Pythagore ta có:

\(O{B^2} = A{B^2} - O{A^2} = {17,5^2} - 187,11 = 119,14\)

Do đó \(OB = \sqrt {119,14}  \approx 10,9\) (cm).

Suy ra \(BD = OB + OD \approx 10,9 + 26,7 = 37,6\) (cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(B < 0\);             
B. \(B = 0\);                 
C. \(B \ne 0\);       
D. \(B > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(6xy\left( {x - 2y} \right)\);     
B. \(6xy\left( {x - y} \right)\);        
C. \(6xy\left( {x + 2y} \right)\);         
D. \(6xy\left( {x + y} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Tam giác cân;             

B. Tam giác đều;

C. Hình chữ nhật;                                             
D. Hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP