Câu hỏi:

19/08/2025 73 Lưu

Cho biểu thức \(A = \frac{4}{{{x^2} + x + 1}}\) và \(B = \frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\) với \(x \ne 1.\)

a) Tính giá trị của biểu thức \(A\) khi \(x = - 2.\)

b) Tìm biểu thức \(C\) biết \(A = B + C\).

c) Chứng minh giá trị của biểu thức \(C\) luôn nhận giá trị dương với mọi \(x \ne 0,x \ne 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(A = \frac{4}{{{x^2} + x + 1}}\) và \(B = \frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\) với \(x \ne 0,x \ne 1.\)

a) Thay \(x = - 2\) (thỏa mãn) vào biểu thức \(A\) ta được:

\[A = \frac{4}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right) + 1}} = \frac{4}{{4 - 2 + 1}} = \frac{4}{3}.\]

b) Ta có \(A = B + C\) nên \(C = A - B\)

\(C = \frac{4}{{{x^2} + x + 1}} - \left( {\frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}} \right)\)

\( = \frac{4}{{{x^2} + x + 1}} - \frac{2}{{1 - x}} - \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\)

\( = \frac{4}{{{x^2} + x + 1}} + \frac{2}{{x - 1}} - \frac{{2{x^2} + 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{4\left( {x - 1} \right) + 2\left( {{x^2} + x + 1} \right) - \left( {2{x^2} + 4x} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{4x - 4 + 2{x^2} + 2x + 2 - 2{x^2} - 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x - 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{2}{{{x^2} + x + 1}}\)

Vậy với \(x \ne 1\) ta có \(C = \frac{2}{{{x^2} + x + 1}}.\)

c) Với \(x \ne 1\) ta có \[C = \frac{2}{{{x^2} + x + 1}} = \frac{2}{{{x^2} + 2.x.\frac{1}{2} + \frac{1}{4} + \frac{3}{4}}} = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}}\].

Mà \({\left( {x + \frac{1}{2}} \right)^2} \ge 0\) nên \({\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\), do đó \[C = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\] với mọi \(x \ne 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\] với \(x \ne 1.\)

a) Với \(x \ne 1\) ta có:

\[P = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} + \frac{{2x + 1}}{{1 - {x^3}}}\]

\[ = \frac{1}{{x - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]

\( = \frac{{{x^2} + x + 1 + x\left( {x - 1} \right) - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^2} + x + 1 + {x^2} - x - 2x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2{x^2} - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x}}{{{x^2} + x + 1}}\).

Vậy với \(x \ne 1\) thì \(P = \frac{{2x}}{{{x^2} + x + 1}}.\)

b) Với \(x = 2\) (thỏa mãn) thay vào biểu thức \(P\) ta được: \(P = \frac{{2 \cdot 2}}{{{2^2} + 2 + 1}} = \frac{4}{7}.\)

c) Với \(x > 0,x \ne 1\) ta có:

⦁ \(2x > 0;\)

⦁ \({x^2} + x + 1 = {x^2} + x + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\)

Do đó \(P = \frac{{2x}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\) với mọi \(x > 0,x \ne 1\).

Câu 2

A. \( - 20x\)                
B. \(50\)               
C. \(20x\);                 
D. \(2{x^2} + 50\).

Lời giải

Đáp án đúng là: A

Ta có: \({\left( {x - 5} \right)^2} - {\left( {x + 5} \right)^2} = \left( {x - 5 + x + 5} \right)\left( {x - 5 - x - 5} \right) = 2x \cdot \left( { - 10} \right) =  - 20x\).

Câu 3

A. \(x{\left( {x - 1} \right)^2}\);        
B. \({x^2}\left( {x - 1} \right)\);       
C. \(x\left( {{x^2} - 1} \right)\);      
D. \(x{\left( {x + 1} \right)^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP