Câu hỏi:

19/06/2025 9

Cho biểu thức \(A = \frac{4}{{{x^2} + x + 1}}\) và \(B = \frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\) với \(x \ne 1.\)

a) Tính giá trị của biểu thức \(A\) khi \(x = - 2.\)

b) Tìm biểu thức \(C\) biết \(A = B + C\).

c) Chứng minh giá trị của biểu thức \(C\) luôn nhận giá trị dương với mọi \(x \ne 0,x \ne 1.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(A = \frac{4}{{{x^2} + x + 1}}\) và \(B = \frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\) với \(x \ne 0,x \ne 1.\)

a) Thay \(x = - 2\) (thỏa mãn) vào biểu thức \(A\) ta được:

\[A = \frac{4}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right) + 1}} = \frac{4}{{4 - 2 + 1}} = \frac{4}{3}.\]

b) Ta có \(A = B + C\) nên \(C = A - B\)

\(C = \frac{4}{{{x^2} + x + 1}} - \left( {\frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}} \right)\)

\( = \frac{4}{{{x^2} + x + 1}} - \frac{2}{{1 - x}} - \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\)

\( = \frac{4}{{{x^2} + x + 1}} + \frac{2}{{x - 1}} - \frac{{2{x^2} + 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{4\left( {x - 1} \right) + 2\left( {{x^2} + x + 1} \right) - \left( {2{x^2} + 4x} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{4x - 4 + 2{x^2} + 2x + 2 - 2{x^2} - 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2x - 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{2}{{{x^2} + x + 1}}\)

Vậy với \(x \ne 1\) ta có \(C = \frac{2}{{{x^2} + x + 1}}.\)

c) Với \(x \ne 1\) ta có \[C = \frac{2}{{{x^2} + x + 1}} = \frac{2}{{{x^2} + 2.x.\frac{1}{2} + \frac{1}{4} + \frac{3}{4}}} = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}}\].

Mà \({\left( {x + \frac{1}{2}} \right)^2} \ge 0\) nên \({\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\), do đó \[C = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\] với mọi \(x \ne 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho tam giác \(ABC\) vuông có cạnh huyền \(AB = \sqrt {117} \;\;{\rm{cm}}{\rm{,}}\,\,BC = 6\;\;{\rm{cm}}.\) Gọi \(K\) là trung điểm của đoạn thẳng \(AC\). Độ dài \(BK\)

Lời giải

Đáp án đúng là: C
Cho tam giác \(ABC\) vuông có cạnh huyền \(AB = \sqrt {117} \;\;{\rm{cm}}{\rm{,}}\,\,BC = 6\;\;{\rm{cm}}.\) Gọi \(K\) là trung điểm của đoạn thẳng \(AC\). Độ dài \(BK\) là (ảnh 1)

Xét \(\Delta ABC\) vuông tại \(C\), theo định lí Pythagore, ta có:

\(A{C^2} = A{B^2} - B{C^2} = {\left( {\sqrt {117} } \right)^2} - {6^2} = 81\).

Suy ra \(AC = \sqrt {81} = 9\;({\rm{cm)}}\).

Do \(K\)trung điểm của đoạn thẳng \(AC\) nên \(CK = \frac{1}{2}AC = 4,5\;\;({\rm{cm)}}.\)

Xét \(\Delta BCK\) vuông tại \(C\), theo định lí Pythagore ta có:

\(B{K^2} = B{C^2} + C{K^2} = {6^2} + {4,5^2} = 56,25\).

Suy ra \(BK = \sqrt {56,25} = 7,5\;\;({\rm{cm)}}\).

Lời giải

Đáp án:               a) Đúng.    b) Đúng.     c) Sai.        d) Sai.

Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\)

Gọi đường cao của mặt đáy là \(CH\) nên \(CH\) đồng thời là đường trung tuyến của tam giác đều \(ABC.\)

Do đó ý a) đúng.

Vì \(HA = HB = \frac{{AB}}{2} = 30{\rm{ cm}}{\rm{.}}\)

Áp dụng định lý Pythagore vào \(\Delta BHC\) vuông tại \(H\), ta có:

\(C{B^2} = H{B^2} + H{C^2}\) hay \({60^2} = {30^2} + H{C^2}\)

Suy ra \(C{H^2} = {60^2} - {30^2} = 2{\rm{ }}700\) nên \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).  (1)

Gọi \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Áp dụng định lý Pythagore vào \[\Delta SHG\] vuông tại \(G\), ta có:

\(S{H^2} = S{G^2} + H{G^2}\)\( = {90^2} + {30^2} = 9000\)

Suy ra \(SH = \sqrt {9000} = 30\sqrt {10} {\rm{ cm}}{\rm{.}}\)     (2)

Từ (1) và (2) suy ra độ dài cạnh \(SH\) lớn hơn độ dài cạnh \(CH\). Do đó ý c) sai.

Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\)

Vậy diện tích xung quanh của hình chóp \(S.ABC\)

\(S = P.d = 90.30\sqrt {10} \approx 8538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Do đó ý d) sai.

Câu 3

Đặc điểm nào sau đây là sai đối với hình chóp tam giác đều \(S.ABC?\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phân thức nào sau đây không phải là phân thức đối của phân thức \(\frac{{1 - x}}{x}\)?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Khi nhân đa thức \(M + N\) với đa thức \(P\) ta được kết quả là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \({x^3} + 12{x^2} + 48x + 64 = {\left( {x + a} \right)^3}\). Giá trị của \(a\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Mẫu thức chung của hai phân thức \(\frac{{3x}}{{{x^2} - 4}}\)\(\frac{x}{{x + 2}}\)   

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay