Cho các số sau: \(3,75;{\rm{ }}\frac{6}{5};{\rm{ }} - 5\pi ;{\rm{ }}\sqrt 7 ;{\rm{ }}\sqrt 2 + 2;{\rm{ }}\sqrt {25} ;{\rm{ 0,1232323}}....{\rm{; }}\frac{2}{3}.\) Trong các số trên, có bao nhiêu số là số vô tỉ?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: \(3\).
Nhận thấy:
• Các số \(3,75;{\rm{ }}\frac{6}{5};{\rm{ }}\frac{2}{3}\) là các số hữu tỉ.
• \(\sqrt {25} = \sqrt {{5^2}} = 5\) là số hữu tỉ.
• \({\rm{0,1232323}}.... = 0,{\rm{1}}\left( {23} \right)\) là số thập phân vô hạn tuần hoàn.
• Các số vô tỉ trong các số trên là \( - 5\pi ;{\rm{ }}\sqrt 7 ;{\rm{ }}\sqrt 2 + 2\).
Do đó, có 3 số vô tỉ trong các số trên.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Thể tích khối đất phải đào để làm đoạn mương đó là: \(\frac{{\left( {1,6 + 2,8} \right) \cdot 1}}{2} \cdot 50 = 110\) (m3).
Số tiền công phải trả để đào được đoạn mương đó là: \(240{\rm{ }}000 \cdot 110 = 26{\rm{ }}400{\rm{ }}000\) (đồng).
Lời giải
Hướng dẫn giải
Ta có: \(5A = 1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}.\)
Suy ra \(5A - A = \left( {1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}} \right) - \left( {\frac{1}{5} + \frac{2}{{{5^2}}} + \frac{3}{{{5^3}}} + \frac{4}{{{5^4}}} + ... + \frac{{1\,\,000}}{{{5^{1\,\,000}}}}} \right)\)
\(4A = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)
Đặt \(B = \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}\).
Ta có \(5B = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}.\)
Suy ra \(5B - B = \left( {1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}} \right) - \left( {\frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}} \right)\)
\(4B = 1 - \frac{1}{{{5^{999}}}}\) nên \(B = \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right)\).
Do đó, \(4A = 1 + \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right) - \frac{{1\,\,000}}{{{5^{1\,\,000}}}} = \frac{5}{4} - \frac{1}{4} \cdot \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)
Khi đó, \(A = \frac{5}{{16}} - \frac{1}{{16}} \cdot \frac{1}{{{5^{999}}}} - \frac{{250}}{{{5^{1\,\,000}}}} < \frac{5}{{16}}.\)
Vậy \(A < \frac{5}{{16}}\).
Câu 3
A. \(3.\)
B. \(\frac{3}{5}.\)
C. \(\frac{5}{3}.\)
D. \(\frac{2}{5}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(a + 2b - c.\)
B. \(a + 2b + c.\)
C. \(a - c.\)
D. \(a + c.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


