Câu hỏi:

29/06/2025 30 Lưu

Chọn khẳng định sai trong các khẳng định sau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Trên đường thẳng chứa vô số điểm.

Do đó, khẳng định C là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(A = \frac{1}{{11}} + \frac{1}{{12}} + \frac{1}{{13}} + ... + \frac{1}{{70}}\)

\(A = \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{20}} + \frac{1}{{21}} + ... + \frac{1}{{30}} + \frac{1}{{31}} + ... + \frac{1}{{40}} + \frac{1}{{41}} + ... + \frac{1}{{50}} + \frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}} + \frac{1}{{61}} + ... + \frac{1}{{70}}\)

\(A = \left( {\frac{1}{{11}} + ... + \frac{1}{{20}}} \right) + \left( {\frac{1}{{21}} + ... + \frac{1}{{30}}} \right) + \left( {\frac{1}{{31}} + ... + \frac{1}{{40}}} \right) + \left( {\frac{1}{{41}} + ... + \frac{1}{{50}}} \right) + \left( {\frac{1}{{51}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + ... + \frac{1}{{70}}} \right)\)

Nhận thấy \(\frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{20}} < \frac{1}{{10}} + \frac{1}{{10}} + ... + \frac{1}{{10}}\) hay \(\frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{20}} < \frac{1}{{10}}.10 = 1\).

                \(\frac{1}{{21}} + \frac{1}{{22}} + ... + \frac{1}{{30}} < \frac{1}{{20}} + \frac{1}{{20}} + ... + \frac{1}{{20}}\) hay \(\frac{1}{{21}} + \frac{1}{{22}} + ... + \frac{1}{{30}} < \frac{1}{{20}}.10 = \frac{1}{2}\)

                \(\frac{1}{{31}} + \frac{1}{{32}} + ... + \frac{1}{{40}} < \frac{1}{{30}} + \frac{1}{{30}} + ... + \frac{1}{{30}}\) hay \(\frac{1}{{31}} + \frac{1}{{32}} + ... + \frac{1}{{40}} < \frac{1}{{30}}.10 = \frac{1}{3}\)

                \(\frac{1}{{41}} + \frac{1}{{42}} + ... + \frac{1}{{50}} < \frac{1}{{40}} + \frac{1}{{40}} + ... + \frac{1}{{40}}\) hay \(\frac{1}{{41}} + \frac{1}{{42}} + ... + \frac{1}{{50}} < \frac{1}{{40}}.10 = \frac{1}{4}\)

                \(\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}} < \frac{1}{{50}} + \frac{1}{{50}} + ... + \frac{1}{{50}}\) hay \(\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}} < \frac{1}{{50}}.10 = \frac{1}{5}\)

                \(\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}} < \frac{1}{{60}} + \frac{1}{{60}} + ... + \frac{1}{{60}}\) hay \(\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}} < \frac{1}{{60}}.10 = \frac{1}{6}\)

Do đó, \(A < 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}\) hay \(A < \frac{{49}}{{20}} < \frac{{50}}{{20}} = \frac{5}{2}\).

Vậy \(\frac{1}{{11}} + \frac{1}{{12}} + \frac{1}{{13}} + ... + \frac{1}{{70}} < \frac{5}{2}\) (đpcm).

Lời giải

a) \(5\frac{3}{7} + \left( {1\frac{8}{{15}} - 4\frac{3}{7}} \right) - 4\frac{7}{{15}}\)

\( = 5 + \frac{3}{7} + 1 + \frac{8}{{15}} - \left( {4 + \frac{3}{7}} \right) - \left( {4 + \frac{7}{{15}}} \right)\)

\( = 5 + \frac{3}{7} + 1 + \frac{8}{{15}} - 4 - \frac{3}{7} - 4 - \frac{7}{{15}}\)

\( = \left( {5 + 1 - 4 - 4} \right) + \left( {\frac{3}{7} - \frac{3}{7}} \right) + \left( {\frac{8}{{15}} - \frac{7}{{15}}} \right)\)

\( = - 2 + 0 + \frac{1}{{15}}\)

\( = \frac{{ - 30}}{{15}} + \frac{1}{{15}} = \frac{{ - 29}}{{15}}\).

b) \(\frac{1}{6} + \frac{1}{{12}} + \frac{1}{{20}} + \frac{1}{{30}} + \frac{1}{{42}}\)

\( = \frac{1}{{2.3}} + \frac{1}{{3.4}} + \frac{1}{{4.5}} + \frac{1}{{5.6}} + \frac{1}{{6.7}}\)

\( = \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \frac{1}{5} - \frac{1}{6} + \frac{1}{6} - \frac{1}{7}\)

\( = \frac{1}{2} - \frac{1}{7} = \frac{5}{{14}}\).