Câu hỏi:

30/06/2025 8

Trong dịp Tết trồng cây, khối 6 phân chia số cây cho các lớp đem trồng như sau: Lớp 6A trồng 10 cây và \(\frac{1}{8}\) số còn lại, lớp 6B trồng 15 cây và \(\frac{1}{8}\) số còn lại, lớp 6C trồng 20 cây và \(\frac{1}{8}\) số còn lại, … Cứ chia như vậy cho đến lớp cuối cùng thì vừa hết số cây và số cây các lớp được chia đem trồng đều bằng nhau. Hỏi có mấy lớp 6, mỗi lớp được chia bao nhiêu cây đem trồng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hai lớp cuối cùng là lớp thứ \(n - 1\) và lớp thứ \(n.\)

Lớp thứ \(n - 1\) được chia \(x\) cây và \(\frac{1}{8}\) số cây còn lại, hay \(x + \frac{1}{8}y\) (cây) (với \(y\) là số cây còn lại sau lớp thứ \(n - 2\) trồng).

Lớp thứ \(n\) là lớp cuối cùng được chia nốt \(y - \frac{1}{8}y = \frac{7}{8}y\) (cây), số cây này nếu theo đúng quy luật của bài toán thì bằng \(x + 5\) (cây) (do không còn số còn lại).

Vì số cây các lớp được chia đem trồng đều bằng nhau nên ta có: \(x + \frac{1}{8}y = x + 5,\) hay \(\frac{1}{8}y = 5,\) suy ra \(y = 40\) (cây).

Khi đó, lớp cuối cùng được chia nốt số cây là: \(\frac{7}{8} \cdot 40 = 35\) (cây), cũng tức là mỗi lớp được chia 35 cây.

Vì lớp 6A trồng 10 cây và \(\frac{1}{8}\) số cây còn lại nên \(\frac{1}{8}\) số cây còn lại chính bằng \(35 - 10 = 25\) (cây).

Tổng số cây là: \(10 + 25:\frac{1}{8} = 210\) (cây).

Số lớp 6 là: \(210:35 = 6\) (lớp).

Vậy có 6 lớp 6 và mỗi lớp được chia 35 cây đem trồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) a) Biểu đồ cột kép trên cho biết về số huy chương các loại (Vàng, Bạc, Đồng) mà đội A và đội B giành được trong ngày hội thể thao.

b) Tổng số huy chương các loại của đội A là: \(9 + 8 + 10 = 27\) (huy chương).

Tổng số huy chương các loại của đội B là: \(8 + 11 + 12 = 31\) (huy chương).

c) Tổng số điểm đội A đạt được là: \(9 \cdot 5 + 8 \cdot 4 + 10 \cdot 3 = 107\) (điểm).

Tổng số điểm đội B đạt được là: \(8 \cdot 5 + 11 \cdot 4 + 12 \cdot 3 = 120\) (điểm).

Như vậy, đội B đạt được tổng số điểm nhiều hơn, và nhiều hơn \(120 - 107 = 13\) điểm.

2) Trong 30 lượt quay, ta thấy có các kết quả mũi tên chỉ số chẵn là:

\(8,\,\,8,\,\,4,\,\,6,\,\,6,\,\,6,\,\,6,\,\,4,\,\,8,\,\,6,\,\,8,\,\,4,\,\,6,\,\,8.\)

Như vậy, có tất cả 14 lượt quay mũi tên chỉ vào số chẵn.

Vậy xác suất thực nghiệm của sự kiện “An thắng” là: \(\frac{{14}}{{30}} = \frac{7}{{15}}.\)

Lời giải

a) \[\frac{7}{{30}} + \frac{{ - 12}}{{37}} + \frac{{23}}{{30}} + \frac{{ - 25}}{{37}}\]

\[ = \left( {\frac{7}{{30}} + \frac{{23}}{{30}}} \right) + \left( {\frac{{ - 12}}{{37}} + \frac{{ - 25}}{{37}}} \right)\]

\[ = 1 + \left( { - 1} \right) = 0.\]

c) \(\frac{2}{{11}}.\frac{{ - 5}}{4} + \frac{{ - 9}}{{11}}.\frac{5}{4} + 1\frac{3}{4}\)

\( = \frac{2}{{11}} \cdot \frac{{ - 5}}{4} + \frac{9}{{11}} \cdot \frac{{ - 5}}{4} + \frac{7}{4}\)

\( = \frac{{ - 5}}{4} \cdot \left( {\frac{2}{{11}} + \frac{9}{{11}}} \right) + \frac{7}{4}\)

\( = \frac{{ - 5}}{4} \cdot \frac{{11}}{{11}} + \frac{7}{4}\)

\( = \frac{{ - 5}}{4} \cdot 1 + \frac{7}{4}\)

\[ = \frac{{ - 5}}{4} + \frac{7}{4}\]

\[ = \frac{2}{4} = \frac{1}{2}.\]

b) \(\left( { - 0,4} \right) \cdot \left( { - 0,5} \right) \cdot \left( { - 0,8} \right)\)

\[ = 0,2 \cdot \left( { - 0,8} \right)\]

\[ = - 0,16.\]

d) \(\left( {\frac{5}{7} \cdot 0,6 - 5:3\frac{1}{2}} \right) \cdot \left( {40\% - 1,4} \right) \cdot {\left( { - \frac{2}{3}} \right)^3}\)

\( = \left( {\frac{5}{7} \cdot \frac{3}{5} - 5:\frac{7}{2}} \right) \cdot \left( {\frac{2}{5} - \frac{7}{5}} \right) \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = \left( {\frac{3}{7} - \frac{{10}}{7}} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = \left( { - 1} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = 1 \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = - \frac{8}{{27}}.\)