Câu hỏi:
30/06/2025 8
Lớp 6A có 40 học sinh, kết quả xếp loại học lực cuối năm gồm 3 loại: Giỏi, Khá, Trung bình (không có học sinh xếp loại Yếu, Kém). Số học sinh đạt loại Giỏi chiếm \(25\% \) số học sinh cả lớp. Số học sinh Trung bình bằng \(\frac{2}{5}\) số học sinh Giỏi. Còn lại là học sinh Khá.
a) Tính số học sinh xếp loại Trung bình của lớp 6A.
b) Tính tỉ số phần trăm số học sinh Khá của lớp 6A so với số học sinh cả lớp.
Lớp 6A có 40 học sinh, kết quả xếp loại học lực cuối năm gồm 3 loại: Giỏi, Khá, Trung bình (không có học sinh xếp loại Yếu, Kém). Số học sinh đạt loại Giỏi chiếm \(25\% \) số học sinh cả lớp. Số học sinh Trung bình bằng \(\frac{2}{5}\) số học sinh Giỏi. Còn lại là học sinh Khá.
a) Tính số học sinh xếp loại Trung bình của lớp 6A.
b) Tính tỉ số phần trăm số học sinh Khá của lớp 6A so với số học sinh cả lớp.
Quảng cáo
Trả lời:
a) Số học sinh đạt loại Giỏi của lớp 6A là:
\(40 \cdot 25\% = 10\) (học sinh).
Số học sinh xếp loại Trung bình của lớp 6A là:
\(\frac{2}{5} \cdot 10 = 4\) (học sinh).
b) Số học sinh xếp loại Khá của lớp 6A là:
\(40 - 10 - 4 = 26\) (học sinh).
Tỉ số phần trăm số học sinh Khá so với số học sinh cả lớp là:
\(\frac{{26}}{{40}} \cdot 100\% = 65\% \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) a) Biểu đồ cột kép trên cho biết về số huy chương các loại (Vàng, Bạc, Đồng) mà đội A và đội B giành được trong ngày hội thể thao.
b) Tổng số huy chương các loại của đội A là: \(9 + 8 + 10 = 27\) (huy chương).
Tổng số huy chương các loại của đội B là: \(8 + 11 + 12 = 31\) (huy chương).
c) Tổng số điểm đội A đạt được là: \(9 \cdot 5 + 8 \cdot 4 + 10 \cdot 3 = 107\) (điểm).
Tổng số điểm đội B đạt được là: \(8 \cdot 5 + 11 \cdot 4 + 12 \cdot 3 = 120\) (điểm).
Như vậy, đội B đạt được tổng số điểm nhiều hơn, và nhiều hơn \(120 - 107 = 13\) điểm.
2) Trong 30 lượt quay, ta thấy có các kết quả mũi tên chỉ số chẵn là:
\(8,\,\,8,\,\,4,\,\,6,\,\,6,\,\,6,\,\,6,\,\,4,\,\,8,\,\,6,\,\,8,\,\,4,\,\,6,\,\,8.\)
Như vậy, có tất cả 14 lượt quay mũi tên chỉ vào số chẵn.
Vậy xác suất thực nghiệm của sự kiện “An thắng” là: \(\frac{{14}}{{30}} = \frac{7}{{15}}.\)
Lời giải
a) \[\frac{7}{{30}} + \frac{{ - 12}}{{37}} + \frac{{23}}{{30}} + \frac{{ - 25}}{{37}}\] \[ = \left( {\frac{7}{{30}} + \frac{{23}}{{30}}} \right) + \left( {\frac{{ - 12}}{{37}} + \frac{{ - 25}}{{37}}} \right)\] \[ = 1 + \left( { - 1} \right) = 0.\] c) \(\frac{2}{{11}}.\frac{{ - 5}}{4} + \frac{{ - 9}}{{11}}.\frac{5}{4} + 1\frac{3}{4}\) \( = \frac{2}{{11}} \cdot \frac{{ - 5}}{4} + \frac{9}{{11}} \cdot \frac{{ - 5}}{4} + \frac{7}{4}\) \( = \frac{{ - 5}}{4} \cdot \left( {\frac{2}{{11}} + \frac{9}{{11}}} \right) + \frac{7}{4}\) \( = \frac{{ - 5}}{4} \cdot \frac{{11}}{{11}} + \frac{7}{4}\) \( = \frac{{ - 5}}{4} \cdot 1 + \frac{7}{4}\) \[ = \frac{{ - 5}}{4} + \frac{7}{4}\] \[ = \frac{2}{4} = \frac{1}{2}.\] |
b) \(\left( { - 0,4} \right) \cdot \left( { - 0,5} \right) \cdot \left( { - 0,8} \right)\) \[ = 0,2 \cdot \left( { - 0,8} \right)\] \[ = - 0,16.\] d) \(\left( {\frac{5}{7} \cdot 0,6 - 5:3\frac{1}{2}} \right) \cdot \left( {40\% - 1,4} \right) \cdot {\left( { - \frac{2}{3}} \right)^3}\) \( = \left( {\frac{5}{7} \cdot \frac{3}{5} - 5:\frac{7}{2}} \right) \cdot \left( {\frac{2}{5} - \frac{7}{5}} \right) \cdot \left( { - \frac{8}{{27}}} \right)\) \( = \left( {\frac{3}{7} - \frac{{10}}{7}} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\) \( = \left( { - 1} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\) \( = 1 \cdot \left( { - \frac{8}{{27}}} \right)\) \( = - \frac{8}{{27}}.\)
|
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.