Câu hỏi:

30/06/2025 8

Lớp 6A có 40 học sinh, kết quả xếp loại học lực cuối năm gồm 3 loại: Giỏi, Khá, Trung bình (không có học sinh xếp loại Yếu, Kém). Số học sinh đạt loại Giỏi chiếm \(25\% \) số học sinh cả lớp. Số học sinh Trung bình bằng \(\frac{2}{5}\) số học sinh Giỏi. Còn lại là học sinh Khá.

a) Tính số học sinh xếp loại Trung bình của lớp 6A.

b) Tính tỉ số phần trăm số học sinh Khá của lớp 6A so với số học sinh cả lớp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Số học sinh đạt loại Giỏi của lớp 6A là:

\(40 \cdot 25\%  = 10\) (học sinh).

Số học sinh xếp loại Trung bình của lớp 6A là:

\(\frac{2}{5} \cdot 10 = 4\) (học sinh).

b) Số học sinh xếp loại Khá của lớp 6A là:

\(40 - 10 - 4 = 26\) (học sinh).

Tỉ số phần trăm số học sinh Khá so với số học sinh cả lớp là:

            \(\frac{{26}}{{40}} \cdot 100\%  = 65\% \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) a) Biểu đồ cột kép trên cho biết về số huy chương các loại (Vàng, Bạc, Đồng) mà đội A và đội B giành được trong ngày hội thể thao.

b) Tổng số huy chương các loại của đội A là: \(9 + 8 + 10 = 27\) (huy chương).

Tổng số huy chương các loại của đội B là: \(8 + 11 + 12 = 31\) (huy chương).

c) Tổng số điểm đội A đạt được là: \(9 \cdot 5 + 8 \cdot 4 + 10 \cdot 3 = 107\) (điểm).

Tổng số điểm đội B đạt được là: \(8 \cdot 5 + 11 \cdot 4 + 12 \cdot 3 = 120\) (điểm).

Như vậy, đội B đạt được tổng số điểm nhiều hơn, và nhiều hơn \(120 - 107 = 13\) điểm.

2) Trong 30 lượt quay, ta thấy có các kết quả mũi tên chỉ số chẵn là:

\(8,\,\,8,\,\,4,\,\,6,\,\,6,\,\,6,\,\,6,\,\,4,\,\,8,\,\,6,\,\,8,\,\,4,\,\,6,\,\,8.\)

Như vậy, có tất cả 14 lượt quay mũi tên chỉ vào số chẵn.

Vậy xác suất thực nghiệm của sự kiện “An thắng” là: \(\frac{{14}}{{30}} = \frac{7}{{15}}.\)

Lời giải

a) \[\frac{7}{{30}} + \frac{{ - 12}}{{37}} + \frac{{23}}{{30}} + \frac{{ - 25}}{{37}}\]

\[ = \left( {\frac{7}{{30}} + \frac{{23}}{{30}}} \right) + \left( {\frac{{ - 12}}{{37}} + \frac{{ - 25}}{{37}}} \right)\]

\[ = 1 + \left( { - 1} \right) = 0.\]

c) \(\frac{2}{{11}}.\frac{{ - 5}}{4} + \frac{{ - 9}}{{11}}.\frac{5}{4} + 1\frac{3}{4}\)

\( = \frac{2}{{11}} \cdot \frac{{ - 5}}{4} + \frac{9}{{11}} \cdot \frac{{ - 5}}{4} + \frac{7}{4}\)

\( = \frac{{ - 5}}{4} \cdot \left( {\frac{2}{{11}} + \frac{9}{{11}}} \right) + \frac{7}{4}\)

\( = \frac{{ - 5}}{4} \cdot \frac{{11}}{{11}} + \frac{7}{4}\)

\( = \frac{{ - 5}}{4} \cdot 1 + \frac{7}{4}\)

\[ = \frac{{ - 5}}{4} + \frac{7}{4}\]

\[ = \frac{2}{4} = \frac{1}{2}.\]

b) \(\left( { - 0,4} \right) \cdot \left( { - 0,5} \right) \cdot \left( { - 0,8} \right)\)

\[ = 0,2 \cdot \left( { - 0,8} \right)\]

\[ = - 0,16.\]

d) \(\left( {\frac{5}{7} \cdot 0,6 - 5:3\frac{1}{2}} \right) \cdot \left( {40\% - 1,4} \right) \cdot {\left( { - \frac{2}{3}} \right)^3}\)

\( = \left( {\frac{5}{7} \cdot \frac{3}{5} - 5:\frac{7}{2}} \right) \cdot \left( {\frac{2}{5} - \frac{7}{5}} \right) \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = \left( {\frac{3}{7} - \frac{{10}}{7}} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = \left( { - 1} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = 1 \cdot \left( { - \frac{8}{{27}}} \right)\)

\( = - \frac{8}{{27}}.\)