Đề thi cuối học kỳ 2 Toán 6 Cánh diều cấu trúc mới có đáp án - Đề 6
7 người thi tuần này 4.6 1.2 K lượt thi 6 câu hỏi 45 phút
🔥 Đề thi HOT:
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
10 câu Trắc nghiệm Toán 6 Chân trời sáng tạo Bài 1: Tập hợp. Phần tử của tập hợp (có đáp án)
20 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án (Phần 2)
5 câu Trắc nghiệm Toán 6 Cánh diều Bài 1: Tập hợp có đáp án ( Nhận biết )
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1) a) Biểu đồ cột kép trên cho biết về số huy chương các loại (Vàng, Bạc, Đồng) mà đội A và đội B giành được trong ngày hội thể thao.
b) Tổng số huy chương các loại của đội A là: \(9 + 8 + 10 = 27\) (huy chương).
Tổng số huy chương các loại của đội B là: \(8 + 11 + 12 = 31\) (huy chương).
c) Tổng số điểm đội A đạt được là: \(9 \cdot 5 + 8 \cdot 4 + 10 \cdot 3 = 107\) (điểm).
Tổng số điểm đội B đạt được là: \(8 \cdot 5 + 11 \cdot 4 + 12 \cdot 3 = 120\) (điểm).
Như vậy, đội B đạt được tổng số điểm nhiều hơn, và nhiều hơn \(120 - 107 = 13\) điểm.
2) Trong 30 lượt quay, ta thấy có các kết quả mũi tên chỉ số chẵn là:
\(8,\,\,8,\,\,4,\,\,6,\,\,6,\,\,6,\,\,6,\,\,4,\,\,8,\,\,6,\,\,8,\,\,4,\,\,6,\,\,8.\)
Như vậy, có tất cả 14 lượt quay mũi tên chỉ vào số chẵn.
Vậy xác suất thực nghiệm của sự kiện “An thắng” là: \(\frac{{14}}{{30}} = \frac{7}{{15}}.\)
Lời giải
a) \[\frac{7}{{30}} + \frac{{ - 12}}{{37}} + \frac{{23}}{{30}} + \frac{{ - 25}}{{37}}\] \[ = \left( {\frac{7}{{30}} + \frac{{23}}{{30}}} \right) + \left( {\frac{{ - 12}}{{37}} + \frac{{ - 25}}{{37}}} \right)\] \[ = 1 + \left( { - 1} \right) = 0.\] c) \(\frac{2}{{11}}.\frac{{ - 5}}{4} + \frac{{ - 9}}{{11}}.\frac{5}{4} + 1\frac{3}{4}\) \( = \frac{2}{{11}} \cdot \frac{{ - 5}}{4} + \frac{9}{{11}} \cdot \frac{{ - 5}}{4} + \frac{7}{4}\) \( = \frac{{ - 5}}{4} \cdot \left( {\frac{2}{{11}} + \frac{9}{{11}}} \right) + \frac{7}{4}\) \( = \frac{{ - 5}}{4} \cdot \frac{{11}}{{11}} + \frac{7}{4}\) \( = \frac{{ - 5}}{4} \cdot 1 + \frac{7}{4}\) \[ = \frac{{ - 5}}{4} + \frac{7}{4}\] \[ = \frac{2}{4} = \frac{1}{2}.\] |
b) \(\left( { - 0,4} \right) \cdot \left( { - 0,5} \right) \cdot \left( { - 0,8} \right)\) \[ = 0,2 \cdot \left( { - 0,8} \right)\] \[ = - 0,16.\] d) \(\left( {\frac{5}{7} \cdot 0,6 - 5:3\frac{1}{2}} \right) \cdot \left( {40\% - 1,4} \right) \cdot {\left( { - \frac{2}{3}} \right)^3}\) \( = \left( {\frac{5}{7} \cdot \frac{3}{5} - 5:\frac{7}{2}} \right) \cdot \left( {\frac{2}{5} - \frac{7}{5}} \right) \cdot \left( { - \frac{8}{{27}}} \right)\) \( = \left( {\frac{3}{7} - \frac{{10}}{7}} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\) \( = \left( { - 1} \right) \cdot \left( { - 1} \right) \cdot \left( { - \frac{8}{{27}}} \right)\) \( = 1 \cdot \left( { - \frac{8}{{27}}} \right)\) \( = - \frac{8}{{27}}.\)
|
Lời giải
a) \[\frac{2}{5} + \frac{3}{5}x = 0\]
\[\frac{3}{5}x = - \frac{2}{5}\]
\[x = \frac{{ - 2}}{5}:\frac{3}{5}\]
\[x = \frac{{ - 2}}{5} \cdot \frac{5}{3}\]
\[x = \frac{{ - 2}}{3}.\]
Vậy \[x = \frac{{ - 2}}{3}.\]b) \(0,2 - 0,8:x = 0,15\)
\(0,8:x = 0,2 - 0,15\)
\(0,8:x = 0,05\)
\(x = 0,8:0,05\)
\(x = 16\)
Vậy \(x = 16.\)
c) \(\frac{1}{3}:x + \left( { - \frac{3}{4} + \frac{2}{3}} \right):x = \frac{5}{8}\)
\(\frac{1}{3} \cdot \frac{1}{x} - \frac{1}{{12}} \cdot \frac{1}{x} = \frac{5}{8}\)
\(\left( {\frac{1}{3} - \frac{1}{{12}}} \right) \cdot \frac{1}{x} = \frac{5}{8}\)
\(\frac{1}{4} \cdot \frac{1}{x} = \frac{5}{8}\)
\(\frac{1}{x} = \frac{5}{2}\)
\(x \cdot 5 = 1 \cdot 2\)
\(5x = 2\)
\(x = \frac{2}{5}\)
Vậy \(x = \frac{2}{5}.\)Lời giải
a) Số học sinh đạt loại Giỏi của lớp 6A là:
\(40 \cdot 25\% = 10\) (học sinh).
Số học sinh xếp loại Trung bình của lớp 6A là:
\(\frac{2}{5} \cdot 10 = 4\) (học sinh).
b) Số học sinh xếp loại Khá của lớp 6A là:
\(40 - 10 - 4 = 26\) (học sinh).
Tỉ số phần trăm số học sinh Khá so với số học sinh cả lớp là:
\(\frac{{26}}{{40}} \cdot 100\% = 65\% \).
Lời giải
1) a)

Vì hai điểm \(A,\,\,B\) cùng nằm trên tia \(Oy\) và \(OA < OB\) (do \(3{\rm{\;cm}} < 5{\rm{\;cm}})\) nên điểm \(A\) nằm giữa hai điểm \(O,\,\,B.\)
b) Vì điểm \(A\) nằm giữa hai điểm \(O,\,\,B\) nên ta có: \(OA + AB = OB\)
Suy ra \(AB = OB - OA = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\)
c)

Vì điểm \(A\) thuộc tia \(Oy,\) điểm \(C\) thuộc tia \[Ox\] mà hai tia \(Ox\) và \(Oy\) đối nhau nên điểm \(O\) nằm giữa hai điểm \(A\) và \(C\)
Do đó \(OC + OA = AC\)
Suy ra \(OC = AC - OA = 6 - 3 = 3{\rm{\;(cm)}}{\rm{.}}\)
Ta có nên điểm \(O\) nằm giữa hai điểm \(A,\,\,C\) và \(OA = OC\,\,\left( { = 3{\rm{\;cm}}} \right)\) nên điểm \(O\) là trung điểm của đoạn thẳng \(AC.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.