10 Bài tập Ứng dụng bội chung và bội chung nhỏ nhất để giải các bài toán thực tế (có lời giải)
107 người thi tuần này 4.6 1 K lượt thi 10 câu hỏi 30 phút
🔥 Đề thi HOT:
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
15 câu Trắc nghiệm Phép cộng hai số nguyên có đáp án
20 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án (Phần 2)
5 câu Trắc nghiệm Toán 6 Cánh diều Bài 1: Tập hợp có đáp án ( Nhận biết )
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. 48 ngày;
B. 192 ngày;
C. 96 ngày;
D. Đáp án khác.
Lời giải
Đáp án đúng là: C
Vì cả hai lớp hôm nay cùng làm kiểm tra nên số ngày mà hai lớp lại cùng làm kiểm tra là bội chung của 24 và 32.
Vậy số ngày ít nhất để cả hai cùng làm kiểm tra là BCNN của 24 và 32.
Phân tích các số ra thừa số nguyên tố, ta được:
\[24 = {2^3}.3\]
\[32 = {2^5}\]
Vậy BCNN (24, 32) = \[{2^5}.3\] = 96.
Vậy sau ít nhất 96 ngày nữa thì cả hai lớp cùng kiểm tra.
Câu 2
A. Số học sinh của câu lạc bộ là ước chung nhỏ nhất của 5 và 12;
B. Câu lạc bộ có 60 học sinh;
C. Số học sinh của câu lạc bộ là ước chung của 5 và 12;
D. Câu lạc bộ có 30 học sinh.
Lời giải
Đáp án đúng là: B
Vì khi chia số học sinh trong câu lạc bộ đó thành từng nhóm 5 học sinh hoặc 12 học sinh thì vừa hết nên số học sinh của câu lạc bộ là bội chung của 5 và 12.
Phân tích các số ra thừa số nguyên tố, ta được:
\[12 = {2^2}.3\]
Vậy BCNN (5, 12) = \[{2^2}.3.5\] = 60.
Vậy BC (5, 12) = {0; 60; 120; 180; ....}.
Mà số học sinh trong câu lạc bộ không vượt quá 100 học sinh.
Vậy số học sinh trong câu lạc bộ là 60 học sinh.
Lời giải
Đáp án đúng là: A
Vì khi xếp hàng 2, hàng 7, hàng 8 đều vừa đủ hàng nên số học sinh là bội chung của 2; 7 và 8.
Phân tích các số ra thừa số nguyên tố, ta được:
\[8 = {2^3}\]
Vậy BCNN (2, 7, 8) = \[{2^3}.7\]= 56.
Vậy BC (2, 7, 8) = {0; 56; 112; 168; ....}.
Mà số học sinh trong khoảng 50 đến 100 học sinh. Vậy số học sinh lớp 6E là 56 học sinh.
Câu 4
A. 1 920 cuốn;
B. 1 960 cuốn;
C. 1 990 cuốn;
D. 1 980 cuốn.
Lời giải
Đáp án đúng là: D
Vì khi xếp thành từng bó 10 cuốn, 12 cuốn, 18 cuốn, 22 cuốn đều vừa đủ bó nên số sách là bội chung của 10; 12; 18 và 22.
Phân tích các số ra thừa số nguyên tố, ta được:
10 = 2.5
\[12 = {2^2}.3\]
\[18 = {2.3^2}\]
22 = 2.11
Vậy BCNN (10, 12, 18, 22) = \[{2^2}{.3^2}.5.11\]= 1 980.
Vậy BC (10, 12, 18, 22) = {0; 1 980; 3 960; ....}.
Mà số sách trong khoảng 1 000 đến 2 000 cuốn. Vậy số sách là 1 980 cuốn.
Câu 5
A. Sai ở bước 1;
B. Sai ở bước 2;
C. Sai ở bước 3;
D. Bài làm đúng.
Lời giải
Đáp án đúng là: C
Vì khi trồng cây thành hàng 15, hàng 35 đều vừa đủ hàng nên số cây bác nông dân trồng là bội chung của 15 và 35.
Phân tích các số ra thừa số nguyên tố, ta được:
15 = 3.5
35 = 5.7
Vậy BCNN (15, 35) = 3.5.7 = 105.
Vậy BC (15, 35) = {0; 105; 210; 315; ....}.
Mà số cây trồng trong khoảng 200 đến 300 cây.
Vậy số cây bác nông dân trồng là 210 cây.
Câu 6
A. 250 đến 300 ngày;
B. 300 đến 400 ngày;
C. 200 đến 300 ngày;
D. 400 đến 500 ngày.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. 250;
B. 400;
C. 300;
D. 350.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. Số cây phải trồng là 225;
B. Số cây phải trồng là số không chia hết cho 2;
C. Số cây phải trồng là 224 cây;
D. Số cây phải trồng là BCNN của 14 và 16.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. 28 trận;
B. 56 trận;
C. 84 trận;
D. Đáp án khác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.