Đề thi cuối học kỳ 2 Toán 6 Cánh diều cấu trúc mới có đáp án - Đề 7
13 người thi tuần này 4.6 1.3 K lượt thi 6 câu hỏi 45 phút
🔥 Đề thi HOT:
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
10 câu Trắc nghiệm Toán 6 Chân trời sáng tạo Bài 1: Tập hợp. Phần tử của tập hợp (có đáp án)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1) a) Biểu đồ đã cho cho biết thông tin số lượng ti vi cửa hàng bán được trong 4 tháng cuối năm 2022.
b) Tháng 12 cửa hàng bán được nhiều ti vi nhất.
Tháng 9 cửa hàng bán được ít ti vi nhất.
Tháng 12 bán được nhiều hơn tháng 9 bán được số chiếc ti vi là:
\(78 - 28 = 50\) (chiếc).
c) Theo em, sự kiện Giải bóng đá World Cup 2022 có liên quan đến việc mua bán ti vi trong tháng 11 và tháng 12, có thể vì nhu cầu xem bóng đá trên ti vi tăng cao.
2) Quan sát bảng kết quả, ta thấy rằng bạn An đổ xúc xắc được số 6 chấm trước bạn Bình nên bạn An được cắm ngựa đi trước.
Có 5 lần đổ xúc xắc mà số chấm trên xúc xắc của Bình hơn của An 1 đơn vị là: lần 1, lần 3, lần 6, lần 9, lần 10.
Như vậy, xác suất của sự kiện số chấm trên xúc xắc của Bình hơn của An 1 đơn vị là: \(\frac{5}{{10}} = \frac{1}{2}.\)
Lời giải
a) \(\frac{1}{5} + \frac{{ - 5}}{{19}} + \frac{4}{5} + \frac{{ - 14}}{{19}}\) \( = \left( {\frac{1}{5} + \frac{4}{5}} \right) + \left( {\frac{{ - 5}}{{19}} + \frac{{ - 14}}{{19}}} \right)\) \( = \frac{5}{5} + \frac{{ - 19}}{{19}}\) \( = 1 + \left( { - 1} \right) = 0.\) c) \(\frac{2}{3}:\frac{4}{5} - \frac{5}{4} + \frac{1}{3}:\frac{4}{5}\) \( = \frac{2}{3} \cdot \frac{5}{4} - \frac{5}{4} + \frac{1}{3} \cdot \frac{5}{4}\) \( = \frac{5}{4} \cdot \left( {\frac{2}{3} - 1 + \frac{1}{3}} \right) = \frac{5}{4} \cdot \left[ {\left( {\frac{2}{3} + \frac{1}{3}} \right) - 1} \right]\) \( = \frac{5}{4} \cdot \left[ {\frac{3}{3} - 1} \right] = \frac{5}{4} \cdot \left( {1 - 1} \right)\) \( = \frac{5}{4} \cdot 0 = 0.\) |
b) \(2,35:\left( { - 0,01} \right) + 650 \cdot \left( { - 0,1} \right)\) \( = - 235 - 65\) \( = - 300.\) d) \[25\% - 1\frac{1}{2} - {\left( { - \frac{1}{2}} \right)^2} + 0,75:\frac{1}{2}\] \[ = \frac{1}{4} - \frac{3}{2} - \frac{1}{4} + \frac{3}{4} \cdot 2\] \[ = \left( {\frac{1}{4} - \frac{1}{4}} \right) - \frac{3}{2} + \frac{3}{2}\] \[ = 0 + \left( { - \frac{3}{2} + \frac{3}{2}} \right)\] \[ = 0.\]
|
Lời giải
a) \(x:\frac{8}{5} = \frac{5}{2}\)
\(x = \frac{5}{2} \cdot \frac{8}{5}\)
\(x = 4\)
Vậy \(x = 4.\)b) \(1,3x - 2,5 = - 4\)
\(1,3x = - 5,1 + 2,5\)
\(1,3x = - 2,6\)
\(x = - 2.\)
Vậy \(x = - 2.\)c) \[ - \frac{3}{4}x + \frac{1}{4}\left( {x - 1} \right) = - \frac{{12}}{5}\]
\[ - \frac{3}{4}x + \frac{1}{4}x - \frac{1}{4} = - \frac{{12}}{5}\]
\[\left( { - \frac{3}{4} + \frac{1}{4}} \right)x - \frac{1}{4} = - \frac{{12}}{5}\]
\[ - \frac{1}{2}x = - \frac{{12}}{5} + \frac{1}{4}\]
\[ - \frac{1}{2}x = - \frac{{48}}{{20}} + \frac{5}{{20}}\]
\[ - \frac{1}{2}x = - \frac{{43}}{{20}}\]
\[x = - \frac{{43}}{{20}}:\left( { - \frac{1}{2}} \right)\]
\[x = \frac{{43}}{{10}}\]
Vậy \[x = \frac{{43}}{{10}}.\]Lời giải
Giá của chiếc áo khi cửa hàng bán lãi \(25\% \) so với giá gốc là:
\(250\,\,000 + 250\,\,000 \cdot 25\% = 312\,\,500\) (đồng).
Giá của chiếc áo khi cửa hàng bán lỗ \(5\% \) so với giá gốc là:
\(250\,\,000 - 250\,\,000 \cdot 5\% = 237\,\,500\) (đồng).
Số tiền cửa hàng dùng để nhập 100 cái áo là:
\(250\,\,000 \cdot 100 = 25\,\,000\,\,000\) (đồng).
Số tiền cửa hàng thu được sau khi bán 100 cái áo là:
\(312\,\,500 \cdot 60 + 237\,\,500 \cdot 40 = 28\,\,250\,\,000\) (đồng).
Ta thấy \(28\,\,250\,\,000 > 25\,\,000\,\,000\) nên sau khi bán hết 100 cái áo cửa hàng đó lãi số tiền là:
\(28\,\,250\,\,000 - 25\,\,000\,\,000 = 3\,\,250\,\,000\) (đồng).
Lời giải
1)
a) Ta có: \(Oa\) và \(Ob\) là hai tia đối nhau
Mà \(M\) thuộc tia \(Oa\), \(N\) thuộc tia \(Ob\) nên \(OM\) và \(ON\) là hai tia đối nhau
Do đó điểm \(O\) nằm giữa hai điểm \(M\) và \(N.\)
b) Vì \(O\) nằm giữa hai điểm \(M\) và \(N\) nên \(MN = OM + ON\)
Suy ra \[MN = 5 + 3 = 8{\rm{\;(cm)}}{\rm{.}}\]
c) Trên tia \(MO\) ta có \(MP < MO\) (do \(2,5\,\,{\rm{cm}} < 5\,\,{\rm{cm)}}\)
Do đó \(P\) là điểm nằm giữa hai điểm \(M,O\)
Nên \(MO = MP + PO\)
Suy ra \(PO = MO - MP = 5 - 2,5 = 2,5{\rm{\;(cm)}}{\rm{.}}\)
Ta có: điểm \(P\) nằm giữa hai điểm \(M,O\) và \(MP = PO\,\,\left( { = 2,5\,\,{\rm{cm}}} \right)\) nên điểm \(P\) là trung điểm của đoạn thẳng \(OM.\)
2) a) Góc vuông có số đo bằng \(90^\circ ;\) góc bẹt có số đo bằng \(180^\circ .\)
b) Ta có: \(0^\circ < 30^\circ < 45^\circ < 90^\circ < 120^\circ < 135^\circ < 180^\circ \)
Do đó \[0^\circ < \widehat {A\,} < \widehat {D\,} < \widehat {B\,} = 90^\circ < \widehat {E\,} < \widehat {C\,} < 180^\circ \]
Như vậy, trong các góc đã cho có 2 góc nhọn là \(\widehat {A\,},\,\,\widehat {D\,}\) và có 2 góc tù là \(\widehat {E\,},\,\,\widehat {C\,}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.