Câu hỏi:
30/06/2025 10
1) Cho điểm \(O\) thuộc đường thẳng \(ab.\) Lấy điểm \(M\) thuộc tia \(Oa,\) điểm \(N\) thuộc tia \(Ob\) sao cho \(OM = 5\,\,{\rm{cm}},\,\,ON = 3\,\,{\rm{cm}}{\rm{.}}\)
a) Trong ba điểm \(O,\,\,M,\,\,N\) thì điểm nào nằm giữa hai điểm còn lại? Vì sao?
b) Tính độ dài đoạn thẳng \(MN.\)
c) Trên đoạn thẳng \(OM\) lấy điểm \(P\) sao cho \(OP = 2,5\,\,{\rm{cm}}{\rm{.}}\) Giải thích tại sao điểm \(P\) là trung điểm của đoạn thẳng \(OM.\)
2) a) Góc vuông, góc bẹt có số đo là bao nhiêu độ?
b) Trong các góc sau: \(\widehat {A\,} = 30^\circ ,\,\,\widehat {B\,} = 90^\circ ,\,\,\widehat {C\,} = 135^\circ ,\,\,\widehat {D\,} = 45^\circ ,\,\,\widehat {E\,} = 120^\circ \) có những góc nào là góc tù và những góc nào là góc nhọn?
1) Cho điểm \(O\) thuộc đường thẳng \(ab.\) Lấy điểm \(M\) thuộc tia \(Oa,\) điểm \(N\) thuộc tia \(Ob\) sao cho \(OM = 5\,\,{\rm{cm}},\,\,ON = 3\,\,{\rm{cm}}{\rm{.}}\)
a) Trong ba điểm \(O,\,\,M,\,\,N\) thì điểm nào nằm giữa hai điểm còn lại? Vì sao?
b) Tính độ dài đoạn thẳng \(MN.\)
c) Trên đoạn thẳng \(OM\) lấy điểm \(P\) sao cho \(OP = 2,5\,\,{\rm{cm}}{\rm{.}}\) Giải thích tại sao điểm \(P\) là trung điểm của đoạn thẳng \(OM.\)
2) a) Góc vuông, góc bẹt có số đo là bao nhiêu độ?
b) Trong các góc sau: \(\widehat {A\,} = 30^\circ ,\,\,\widehat {B\,} = 90^\circ ,\,\,\widehat {C\,} = 135^\circ ,\,\,\widehat {D\,} = 45^\circ ,\,\,\widehat {E\,} = 120^\circ \) có những góc nào là góc tù và những góc nào là góc nhọn?
Quảng cáo
Trả lời:
1)
a) Ta có: \(Oa\) và \(Ob\) là hai tia đối nhau
Mà \(M\) thuộc tia \(Oa\), \(N\) thuộc tia \(Ob\) nên \(OM\) và \(ON\) là hai tia đối nhau
Do đó điểm \(O\) nằm giữa hai điểm \(M\) và \(N.\)
b) Vì \(O\) nằm giữa hai điểm \(M\) và \(N\) nên \(MN = OM + ON\)
Suy ra \[MN = 5 + 3 = 8{\rm{\;(cm)}}{\rm{.}}\]
c) Trên tia \(MO\) ta có \(MP < MO\) (do \(2,5\,\,{\rm{cm}} < 5\,\,{\rm{cm)}}\)
Do đó \(P\) là điểm nằm giữa hai điểm \(M,O\)
Nên \(MO = MP + PO\)
Suy ra \(PO = MO - MP = 5 - 2,5 = 2,5{\rm{\;(cm)}}{\rm{.}}\)
Ta có: điểm \(P\) nằm giữa hai điểm \(M,O\) và \(MP = PO\,\,\left( { = 2,5\,\,{\rm{cm}}} \right)\) nên điểm \(P\) là trung điểm của đoạn thẳng \(OM.\)
2) a) Góc vuông có số đo bằng \(90^\circ ;\) góc bẹt có số đo bằng \(180^\circ .\)
b) Ta có: \(0^\circ < 30^\circ < 45^\circ < 90^\circ < 120^\circ < 135^\circ < 180^\circ \)
Do đó \[0^\circ < \widehat {A\,} < \widehat {D\,} < \widehat {B\,} = 90^\circ < \widehat {E\,} < \widehat {C\,} < 180^\circ \]
Như vậy, trong các góc đã cho có 2 góc nhọn là \(\widehat {A\,},\,\,\widehat {D\,}\) và có 2 góc tù là \(\widehat {E\,},\,\,\widehat {C\,}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cách 1. Tỉ số vận tốc lúc lên dốc và vận tốc lúc xuống dốc là \(\frac{{10}}{{15}} = \frac{2}{3}\). Như vậy, vận tốc 10 km/h bằng \(\frac{2}{3}\) vận tốc 15 km/h.
Giả sử trong 2 giờ lúc đi, người đó đều đi với vận tốc 10 km/h thì đi được quãng đường là: \(AC + \frac{2}{3}CB,\) dài là: \(10 \cdot 2 = 20\) (km).
Giả sử trong 1 giờ 45 phút \[( = 1\frac{3}{4}\] giờ) lúc về, người đó đều đi với vận tốc 10 km/h thì đi được quãng đường \(BC + \frac{2}{3}CA,\) dài là: \(10 \cdot 1\frac{3}{4} = 17,5\) (km).
Do đó quãng đường \(20 + 17,5 = 37,5\) (km) tương ứng với
\(AC + \frac{2}{3}CB + BC + \frac{2}{3}AC = \frac{5}{3}\left( {AC + CB} \right) = \frac{5}{3}AB\)
Vậy quãng đường \(AB\) dài là: \(37,5:\frac{5}{3} = 22,5\) (km).
Cách 2. Trên mỗi km của quãng đường \[AB\] đều có một lần người đi xe đạp đi với vận tốc 10 km/h, một lần đi với vận tốc 15 km/h.
1 km đi với vận tốc 10 km/h hết \(\frac{1}{{10}}\) giờ, 1 km đi với vận tốc 15 km/h hết \(\frac{1}{{15}}\) giờ, do đó 1 km cả đi lẫn về hết: \(\frac{1}{{10}} + \frac{1}{{15}} = \frac{1}{6}\) (giờ).
Thời gian cả đi lẫn về : \(2 + 1\frac{3}{4} = 3\frac{3}{4}\) (giờ).
Quãng đường \(AB\) là: \(3\frac{3}{4}:\frac{1}{6} = 22,5\) (km).
Lời giải
a) \(\frac{1}{5} + \frac{{ - 5}}{{19}} + \frac{4}{5} + \frac{{ - 14}}{{19}}\) \( = \left( {\frac{1}{5} + \frac{4}{5}} \right) + \left( {\frac{{ - 5}}{{19}} + \frac{{ - 14}}{{19}}} \right)\) \( = \frac{5}{5} + \frac{{ - 19}}{{19}}\) \( = 1 + \left( { - 1} \right) = 0.\) c) \(\frac{2}{3}:\frac{4}{5} - \frac{5}{4} + \frac{1}{3}:\frac{4}{5}\) \( = \frac{2}{3} \cdot \frac{5}{4} - \frac{5}{4} + \frac{1}{3} \cdot \frac{5}{4}\) \( = \frac{5}{4} \cdot \left( {\frac{2}{3} - 1 + \frac{1}{3}} \right) = \frac{5}{4} \cdot \left[ {\left( {\frac{2}{3} + \frac{1}{3}} \right) - 1} \right]\) \( = \frac{5}{4} \cdot \left[ {\frac{3}{3} - 1} \right] = \frac{5}{4} \cdot \left( {1 - 1} \right)\) \( = \frac{5}{4} \cdot 0 = 0.\) |
b) \(2,35:\left( { - 0,01} \right) + 650 \cdot \left( { - 0,1} \right)\) \( = - 235 - 65\) \( = - 300.\) d) \[25\% - 1\frac{1}{2} - {\left( { - \frac{1}{2}} \right)^2} + 0,75:\frac{1}{2}\] \[ = \frac{1}{4} - \frac{3}{2} - \frac{1}{4} + \frac{3}{4} \cdot 2\] \[ = \left( {\frac{1}{4} - \frac{1}{4}} \right) - \frac{3}{2} + \frac{3}{2}\] \[ = 0 + \left( { - \frac{3}{2} + \frac{3}{2}} \right)\] \[ = 0.\]
|
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.