5.1. Cho tam giác \(ABC\) có \(\widehat {BAC} = 60^\circ \). Tia phân giác của góc \(B\) cắt \(AC\) ở \(D\). Tia phân giác của góc \(C\) cắt \(AB\) ở \(E;\) \(BD\) và \(CE\) cắt nhau ở \(M.\) Hỏi số đo \(\widehat {EMD}\) bằng bao nhiêu độ?
5.2. Cho tam giác \[ABC\] cân tại \(A\). Lấy điểm \(D\) trên cạnh \(AC\), điểm \(E\) trên cạnh \(AC\) sao cho \(BD = CE\).
a) Chứng minh \(AD = AE\) và \(\Delta ABE = \Delta ACD\).
b) Chứng minh \[\Delta ABI = \Delta ACI\], từ đó suy ra \[AI\] là đường phân giác của góc \[BAC\].
c) Tìm vị trí của hai điểm \[D\] và \[E\] sao cho \[BD = DE = EC\]. Khi đó tìm vị trí của điểm \(I.\)
5.1. Cho tam giác \(ABC\) có \(\widehat {BAC} = 60^\circ \). Tia phân giác của góc \(B\) cắt \(AC\) ở \(D\). Tia phân giác của góc \(C\) cắt \(AB\) ở \(E;\) \(BD\) và \(CE\) cắt nhau ở \(M.\) Hỏi số đo \(\widehat {EMD}\) bằng bao nhiêu độ?
5.2. Cho tam giác \[ABC\] cân tại \(A\). Lấy điểm \(D\) trên cạnh \(AC\), điểm \(E\) trên cạnh \(AC\) sao cho \(BD = CE\).
a) Chứng minh \(AD = AE\) và \(\Delta ABE = \Delta ACD\).
b) Chứng minh \[\Delta ABI = \Delta ACI\], từ đó suy ra \[AI\] là đường phân giác của góc \[BAC\].
c) Tìm vị trí của hai điểm \[D\] và \[E\] sao cho \[BD = DE = EC\]. Khi đó tìm vị trí của điểm \(I.\)
Quảng cáo
Trả lời:
5.1.
![5.1. Cho tam giác \(ABC\) có \(\widehat {BAC} = 60^\circ \). Tia phân giác của góc \(B\) cắt \(AC\) ở \(D\). Tia phân giác của góc \(C\) cắt \(AB\) ở \(E;\) \(BD\) và \(CE\) cắt nhau ở \(M.\) Hỏi số đo \(\widehat {EMD}\) bằng bao nhiêu độ? 5.2. Cho tam giác \[ABC\] cân tại \(A\). Lấy điểm \(D\) trên cạnh \(AC\), điểm \(E\) trên cạnh \(AC\) sao cho \(BD = CE\). a) Chứng minh \(AD = AE\) và \(\Delta ABE = \Delta ACD\). b) Chứng minh \[\Delta ABI = \Delta ACI\], từ đó suy ra \[AI\] là đường phân giác của góc \[BAC\]. c) Tìm vị trí của hai điểm \[D\] và \[E\] sao cho \[BD = DE = EC\]. Khi đó tìm vị trí của điểm \(I.\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid4-1751274228.png)
Xét \(\Delta ABC\) có \(\widehat A + \widehat {ABC} + \widehat {ACB} = 180^\circ \), suy ra \(\widehat {ABC} + \widehat {ACB} = 120\).
Suy ra \({B_2} + {C_1} = 120^\circ :2 = 60^\circ \).
Xét \(\Delta ABC\) có \(\widehat {{B_1}} + \widehat {{C_2}} + \widehat {BMD} = 180\) do đó \(\widehat {BMD} = 180^\circ - 60^\circ = 120^\circ \).
Vậy \(\widehat {BMD} = 120^\circ \).
5.2.
![5.1. Cho tam giác \(ABC\) có \(\widehat {BAC} = 60^\circ \). Tia phân giác của góc \(B\) cắt \(AC\) ở \(D\). Tia phân giác của góc \(C\) cắt \(AB\) ở \(E;\) \(BD\) và \(CE\) cắt nhau ở \(M.\) Hỏi số đo \(\widehat {EMD}\) bằng bao nhiêu độ? 5.2. Cho tam giác \[ABC\] cân tại \(A\). Lấy điểm \(D\) trên cạnh \(AC\), điểm \(E\) trên cạnh \(AC\) sao cho \(BD = CE\). a) Chứng minh \(AD = AE\) và \(\Delta ABE = \Delta ACD\). b) Chứng minh \[\Delta ABI = \Delta ACI\], từ đó suy ra \[AI\] là đường phân giác của góc \[BAC\]. c) Tìm vị trí của hai điểm \[D\] và \[E\] sao cho \[BD = DE = EC\]. Khi đó tìm vị trí của điểm \(I.\) (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid5-1751274248.png)
a) Ta có \[AB = AC\] (do \(\Delta ABC\) cân tại \(A\)) và
\[BD = CE\] (giả thiết)
Suy ra \(AB - BD = AC - CE\) hay \(AD = AE\).
Xét \(\Delta ABE\) và \(\Delta ACD\) có:
\[AB = AC\] (chứng minh trên);
\(\widehat {BAC}\) là góc chung;
\[AD = AE\] (chứng minh trên).
Do đó \[\Delta ABE = \Delta ACD\,\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right)\].
b) Từ \[\Delta ABE = \Delta ACD\] suy ra \(\widehat {ABE} = \widehat {ACD}\) (hai góc tương ứng)
Mà \(\widehat {ABC} = \widehat {ACB}\) (do \(\Delta ABC\) cân tại \(A\))
Suy ra \(\widehat {IBC} = \widehat {ICB}\)
Tam giác \[IBC\] có \(\widehat {IBC} = \widehat {ICB}\) nên là tam giác cân tại \(I\).
Do đó \[IB = IC\].
Xét \(\Delta ABI\) và \(\Delta ACI\) có:
\[AB = AC\] (chứng minh trên);
\[AI\] là cạnh chung;
\[IB = IC\] (chứng minh trên).
Do đó \[\Delta ABI = \Delta ACI\,\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\]
Suy ra \(\widehat {BAI} = \widehat {CAI}\) (hai góc tương ứng).
Nên \[AI\] là tia phân giác của \(\widehat {BAC}\).
c) Xét \(\Delta ADE\) có \[AD = AE\] nên \(\Delta ADE\) cân tại \(A\), do đó \(\widehat {ADE} = \widehat {AED}\).
Mà \(\widehat {DAE} + \widehat {ADE} + \widehat {AED} = 180^\circ \) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {ADE} = \widehat {AED} = \frac{{180^\circ - \widehat {DAE}}}{2}\,\,\,\,\,\left( 1 \right)\).
Tương tự với \(\Delta ABC\) cân tại \(A\) ta có \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2}\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(\widehat {ADE} = \widehat {ABC}\)
Mà hai góc này ở vị trí đồng vị nên \(DE\,{\rm{//}}\,BC\).
Suy ra \(\widehat {DEB} = \widehat {EBC}\) (hai góc so le trong) (3)
\(\Delta BDE\) có \[BD = DE\] nên là tam giác cân tại \(D\), suy ra \(\widehat {DBE} = \widehat {DEB}\,\,\,\,\,\left( 4 \right)\)
Từ (3) và (4) suy ra \(\widehat {DBE} = \widehat {EBC}\)
Khi đó \[BE\] là đường phân giác của \(\widehat {ABC}\).
Tương tự, với \[DE = EC\] ta cũng chứng minh được \[CD\] là đường phân giác của \(\widehat {ACB}\)
Xét \(\Delta ABC\) có \[BE,CD\] là hai đường phân giác của tam giác cắt nhau tại \(I\).
Suy ra \(I\) cách đều ba cạnh của \(\Delta ABC\).
Vậy để \[BD = DE = EC\] thì \[BE\] và \[CD\] là hai đường phân giác của \(\Delta ABC\), khi đó \(I\) cách đều ba cạnh của \(\Delta ABC\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Biểu thức đại số biểu thị nhiệt độ lúc mặt trời lặn theo \(x,y,z\) là: \(x + y - z{\rm{ }}\left( {^\circ C} \right)\).
b) Giá trị biểu thức đại số khi \(x = 30^\circ C,y = 6^\circ C,z = 10^\circ C\) là: \(x + y - z = 30 + 6 - 10 = 26{\rm{ }}\left( {^\circ C{\rm{ }}} \right)\).
Lời giải
a) Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:
\(A = \left\{ {12;13;14;15;16;17} \right\}\). Do đó, có 6 kết quả có thể xảy ra.
b) Kết quả thuận lợi cho biến cố \(B\) là \(12\). Do đó có 1 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố \(B\) là \(\frac{1}{6}\).
c) Kết quả thuận lợi cho biến cố \(C\) là \(14;17\). Do đó, có 2 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố \(C\) là \(\frac{2}{6} = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
