Câu hỏi:

30/06/2025 24 Lưu

Trong một thùng đựng \(20\) quả bóng được đánh số \(5;6;7;....;23;24\). Lấy ngẫu nhiên một quả bóng.

     a) Viết tập hợp \(M\) gồm các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra.

     b) Tính xác suất của biến cố \(N\): “Quả bóng lấy ra là số lẻ”.

     c) Tính xác suất của biến cố \(P\) : “Quả bóng lấy ra là ước của \(48\)”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:

         \(M = \left\{ {5;6;7;....;23;24} \right\}\).

Do đó, có 20 kết quả có thể xảy ra.

b) Các kết quả thuận lợi cho biến cố \(N\) là: \(5;7;9;....;21;23.\)

Do đó, có \(\left( {23 - 5} \right):2 + 1 = 10\) kết quả thuận lợi cho biến cố này.

Vậy xác suất của biến cố \(N\)\(\frac{{10}}{{20}} = \frac{1}{2}\).

c) Các kết quả thuận lợi cho biến cố \(P\) là: \(6;8;12;16;24\).

Do đó, có 5 kết quả thuận lợi cho biến cố này.

Vậy xác suất của biến cố \(P\)\(\frac{5}{{20}} = \frac{1}{4}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì xác suất thực nghiệm xuất hiện mặt sấp là \(\frac{4}{9} = \frac{{4k}}{{9k}}\) \(\left( {k \in {\mathbb{N}^*}} \right)\).

Do đó, tổng số lần tung đồng xu là \(9.k\) (lần).

Số lần xuất hiện mặt sấp là \(4.k\) (lần)

Suy ra số lần xuất hiện mặt ngửa là \(9.k - 4.k = 5.k\) (lần).

Mà tích số lần xuất hiện mặt ngửa và mặt sấp là \(500\) nên ta có: \(4k.5k = 500\) hay \(20.{k^2} = 500\).

Suy ra \({k^2} = 25\)\(k = 5\)\(\left( {k \in {\mathbb{N}^*}} \right)\).

Do đó, bạn Hanh đã tung đồng xu số lần là: \(9.5 = 45\) (lần).

Lời giải

a) Diện tích phần còn lại của khu vườn là: \(a\left( {a - 8} \right) - {b^2}{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

b) Diện tích phần còn lại của khu vườn khi \(a = 50{\rm{ m}}{\rm{, }}b = 10{\rm{ m}}\) là: \(50\left( {50 - 8} \right) - {10^2} = 2{\rm{ }}000{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).