Câu hỏi:
30/06/2025 6
Cho đa thức \(A\left( x \right) = \frac{1}{4}{x^3} + \frac{{11}}{3}{x^2} - 6x - \frac{2}{3}{x^2} + \frac{7}{4}{x^3} + 2x + 3\);
a) Thu gọn và sắp xếp đa thức \(A\left( x \right)\) theo lũy thừa giảm dần của biến.
b) Xác định bậc và hệ số cao nhất của đa thức \(A\left( x \right)\).
c) Tìm \(n\) biết \({2^n} = A\left( { - 1} \right)\).
d) Cho \(B\left( x \right) = \left( {{x^2} - x + 1} \right)\left( {2x + 3} \right)\).
Tính \(C\left( x \right) = A\left( x \right) - B\left( x \right)\). Tìm nghiệm của đa thức \(C\left( x \right)\).
Cho đa thức \(A\left( x \right) = \frac{1}{4}{x^3} + \frac{{11}}{3}{x^2} - 6x - \frac{2}{3}{x^2} + \frac{7}{4}{x^3} + 2x + 3\);
a) Thu gọn và sắp xếp đa thức \(A\left( x \right)\) theo lũy thừa giảm dần của biến.
b) Xác định bậc và hệ số cao nhất của đa thức \(A\left( x \right)\).
c) Tìm \(n\) biết \({2^n} = A\left( { - 1} \right)\).
d) Cho \(B\left( x \right) = \left( {{x^2} - x + 1} \right)\left( {2x + 3} \right)\).
Tính \(C\left( x \right) = A\left( x \right) - B\left( x \right)\). Tìm nghiệm của đa thức \(C\left( x \right)\).
Quảng cáo
Trả lời:
a) \(A\left( x \right) = \frac{1}{4}{x^3} + \frac{{11}}{3}{x^2} - 6x - \frac{2}{3}{x^2} + \frac{7}{4}{x^3} + 2x + 3\)
\( = \left( {\frac{1}{4} + \frac{7}{4}} \right){x^3} + \left( {\frac{{11}}{3} - \frac{2}{3}} \right){x^2} + \left( { - 6 + 2} \right)x + 3\)
\( = 2{x^3} + 3{x^2} - 4x + 3\).
b) Đa thức \(A\left( x \right)\) có bậc là 3 và hệ số cao nhất là \(2\).
c) Ta có \(A\left( { - 1} \right) = 2.{\left( { - 1} \right)^3} + 3.{\left( { - 1} \right)^2} - 4.\left( { - 1} \right) + 3 = 8\).
Theo bài, \({2^n} = A\left( { - 1} \right)\) nên \({2^n} = 8 = {2^3}\)
Suy ra \(n = 3\).
Vậy \(n = 3\).
d) \(B\left( x \right) = \left( {{x^2} - x + 1} \right)\left( {2x + 3} \right)\)
\( = 2{x^3} + 3{x^2} - 2{x^2} - 3x + 2x + 3\)
\( = 2{x^3} + {x^2} - x + 3\)
Ta có \(C\left( x \right) = A\left( x \right) - B\left( x \right)\)
\( = 2{x^3} + 3{x^2} - 4x + 3 - \left( {2{x^3} + {x^2} - x + 3} \right)\)
\( = 2{x^3} + 3{x^2} - 4x + 3 - 2{x^3} - {x^2} + x - 3\)
\( = 2{x^2} - 3x\).
Để tìm nghiệm của đa thức \(C\left( x \right)\), ta cho \(C\left( x \right) = 0\)
Do đó \(2{x^2} - 3x = 0\) hay \(x\left( {2x - 3} \right) = 0\)
Suy ra \(x = 0\) hoặc \(x = \frac{3}{2}\).
Vậy nghiệm của đa thức \(C\left( x \right)\) là \(x \in \left\{ {0;\frac{3}{2}} \right\}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mật mã két sắt nhà Trang là số có ba chữ số và được tạo thành từ các chữ số \(1,2,3\).
Do đó, số các số được lập thành từ ba chữ số \(1,2,3\) là \(3.3.3 = 27\).
Mà mật mã két sắt chỉ có một.
Suy ra xác suất để mẹ Trang mở một lần đúng được mật mã là: \(\frac{1}{{27}}.\)
Lời giải
a) Biến cố chắc chắn là biến cố \(M\): “Tổng các số ghi trên hai quả bóng lớn hơn 2”, vì hai số nhỏ nhất ghi trên mỗi quả bóng lấy từ hai hộp lần lượt là \(1\) và \(2\) nên tổng các số gho trên hai quả bóng nhỏ nhất là \(3\), chắc chắn lớn hơn \(2.\)
Biến cố không thể là biến cố \(P\): “Chênh lệch giữa hai số ghi trên hai quả bóng bằng 10”. Vì chênh lệch lớn nhất giữa hai số lấy được trên mỗi quả bóng từ hai hộp là 9, khi hộp \(A\) lấy được số 1 và hộp \(B\) lấy được số \(10\).
b) Trong năm quả bóng từ hộp \(A\) ghi các số \(1;3;5;7;9\) có ba số nguyên tố là \(3;5;7\).
Do đó, xác suất của biến cố \(Q\) là \(\frac{3}{5}.\)
c) Trong năm quả bóng từ hộp \(B\) ghi các số \(2;4;6;8;10\) có các số là ước của \(16\) là: \(2;4;8\).
Do đó, xác suất của biến cố \(P\) là \(\frac{3}{5}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.