Câu hỏi:
30/06/2025 7
1.1. Tìm \(x,\) biết:
a) \[\frac{{ - 6}}{x} = \frac{9}{{ - 15}};\] b) \[\frac{{2x + 3}}{{24}} = \frac{{3x - 1}}{{32}}\].
1.2. Ba đội công nhân cùng làm ba khối lượng công việc như nhau. Đội thứ nhất hoàn thành công việc trong 5 ngày, đội thứ hai hoàn thành công việc trong 6 ngày, đội thứ ba hoàn thành công việc trong 4 ngày. Tính số người của mỗi đội, biết rằng năng suất của mỗi người là như nhau và đội thứ ba nhiều hơn đội thứ hai là 20 người.
1.1. Tìm \(x,\) biết:
a) \[\frac{{ - 6}}{x} = \frac{9}{{ - 15}};\] b) \[\frac{{2x + 3}}{{24}} = \frac{{3x - 1}}{{32}}\].
1.2. Ba đội công nhân cùng làm ba khối lượng công việc như nhau. Đội thứ nhất hoàn thành công việc trong 5 ngày, đội thứ hai hoàn thành công việc trong 6 ngày, đội thứ ba hoàn thành công việc trong 4 ngày. Tính số người của mỗi đội, biết rằng năng suất của mỗi người là như nhau và đội thứ ba nhiều hơn đội thứ hai là 20 người.
Quảng cáo
Trả lời:
1.1.
a) \[\frac{{ - 6}}{x} = \frac{9}{{ - 15}}\] \[9x = - 6.\left( { - 15} \right)\] \[9x = 90\] \[x = 10\] Vậy \[x = 10\], |
b) \[\frac{{2x + 3}}{{24}} = \frac{{3x - 1}}{{32}}\] \[32.\left( {2x + 3} \right) = 24.\left( {3x - 1} \right)\] \[64x + 96 = 72x - 24\] \[72x - 64x = 96 + 24\] \[8x = 120\] \[x = 15\] Vậy \[x = 15\]. |
1.2. Gọi số người của đội một, đội hai, đội ba lần lượt là \(x,y,z\) (công nhân) với \(x,y,z \in {\mathbb{N}^*}\).
Đội thứ ba nhiều hơn đội thứ hai là 20 người nên ta có: \(z - y = 20\).
Vì khối lượng công việc như nhau, số công nhân và số ngày tỉ lệ nghịch với nhau nên:
\(5x = 6y = 4z\) hay \(\frac{x}{{12}} = \frac{y}{{10}} = \frac{z}{{15}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{12}} = \frac{y}{{10}} = \frac{z}{{15}} = \frac{{z - y}}{{15 - 10}} = \frac{{20}}{5} = 4\).
Do đó, \(x = 4.12 = 48;{\rm{ }}y = 10.4 = 40;{\rm{ }}z = 15.4 = 60\).
Vậy số người của ba đội lần lượt là 48; 40; 60 người.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
2.1. Thay \(x = - 1,y = 3\) vào biểu thức \(B = 3{x^2}y + 6{x^2}{y^2} + 3x{y^2}\), ta được:
\(B = 3.{\left( { - 1} \right)^2}.3 + 6{\left( { - 1} \right)^2}{.3^2} + 3.\left( { - 1} \right){.3^2} = 36\).
Vậy giá trị của biểu thức \(B = 36\).
2.2. a) \(A\left( x \right) = - \frac{5}{3}{x^2} + \frac{3}{4}{x^4} + 2x - \frac{7}{3}{x^2} - 3 + 4x + \frac{1}{4}{x^4}\)
\( = \left( {\frac{3}{4} + \frac{1}{4}} \right){x^4} + \left( { - \frac{5}{3} - \frac{7}{3}} \right){x^2} + \left( {2 + 4} \right)x - 3\)
\( = {x^4} - 4{x^2} + 6x - 3\).
b) Đa thức \(A\left( x \right)\) có bậc 4 và hệ số cao nhất là 1.
c) \(B\left( x \right) = \left( {{x^2} - 1} \right)\left( {{x^2} - 2} \right)\)
\( = {x^4} - 2{x^2} - {x^2} + 2\)
\( = {x^4} - 3{x^2} + 2\).
Ta có \(A\left( x \right) + C\left( x \right) = B\left( x \right)\)
Suy ra \(C\left( x \right) = B\left( x \right) - A\left( x \right)\)
\( = {x^4} - 3{x^2} + 2 - \left( {{x^4} - 4{x^2} + 6x - 3} \right)\)
\( = {x^4} - 3{x^2} + 2 - {x^4} + 4{x^2} - 6x + 3\)
\( = {x^2} - 6x + 5\).
d) Ta có:
• \(B\left( { - 1} \right) = {\left( { - 1} \right)^4} - 3.{\left( { - 1} \right)^2} + 2 = 1 - 3 + 2 = 0\).
Do đó \(x = - 1\) là nghiệm của đa thức \(B\left( x \right)\).
• \(C\left( { - 1} \right) = {\left( { - 1} \right)^2} - 6.\left( { - 1} \right) + 5 = 1 + 6 + 5 = 12\).
Do đó \(x = - 1\) không là nghiệm của đa thức \(C\left( x \right)\).
Lời giải

a) Xét \(\Delta OAE\) và \(\Delta OBF\), có:
\(\widehat {OAE} = \widehat {OBF} = 90^\circ \)
\(OA = OB\) (giả thiết)
\(\widehat {AOB}\) là góc chung
Do đó, \(\Delta OAE = \Delta OBF\) (cgv – gn)
Suy ra \(OE = OF\) (hai cạnh tương ứng)
b) Áp dụng bất đẳng thức tam giác cho \(\Delta EIF\), ta được: \(EF < EI + IF\).
Mà \(2EM = EF\) (do \(M\) là trung điểm của \(EF\))
Suy ra \(2EM < EI + IF.\)
Vậy \(EM < \frac{{EI + IF}}{2}.\)
c) Xét \(\Delta EOF\) có hai đường cao \(FB\) và \(AE\) cắt nhau tại \(I\).
Suy ra \(I\) là trực tâm của \(\Delta OEF.\)
Do đó, \(OI \bot EF\) (1)
Xét \(\Delta OEM\) và \(\Delta OFM\), có:
\(OM\) là cạnh chung
\(ME = MF\) (do \(M\) là trung điểm của \(EF\))
\(OE = OF\) (câu a)
Do đó, \(\Delta OEM = \Delta OFM\) (c.c.c)
Suy ra \(\widehat {OME} = \widehat {OMF}\) (hai góc tương ứng)
Mà \(\widehat {OME} + \widehat {OMF} = 180^\circ \) (hai góc kề bù)
Do đó, \(\widehat {OME} = \widehat {OMF} = 90^\circ \) hay \(OM \bot EF\) (2)
Từ (1) và (2) suy ra \(O,I,M\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.