Mật mã của một chiếc két sắt nhà Trang là một số có ba chữ số và được lập từ các chữ số \(1,2,3\). Mẹ Trang muốn mở khóa két sắt mà quên mất mật mã. Tính xác suất để mẹ Trang mở 1 lần đúng mật mã.
Quảng cáo
Trả lời:

Mật mã két sắt nhà Trang là số có ba chữ số và được tạo thành từ các chữ số \(1,2,3\).
Do đó, số các số được lập thành từ ba chữ số \(1,2,3\) là \(3.3.3 = 27\).
Mà mật mã két sắt chỉ có một.
Suy ra xác suất để mẹ Trang mở một lần đúng được mật mã là: \(\frac{1}{{27}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét \(\Delta OAE\) và \(\Delta OBF\), có:
\(\widehat {OAE} = \widehat {OBF} = 90^\circ \)
\(OA = OB\) (giả thiết)
\(\widehat {AOB}\) là góc chung
Do đó, \(\Delta OAE = \Delta OBF\) (cgv – gn)
Suy ra \(OE = OF\) (hai cạnh tương ứng)
b) Áp dụng bất đẳng thức tam giác cho \(\Delta EIF\), ta được: \(EF < EI + IF\).
Mà \(2EM = EF\) (do \(M\) là trung điểm của \(EF\))
Suy ra \(2EM < EI + IF.\)
Vậy \(EM < \frac{{EI + IF}}{2}.\)
c) Xét \(\Delta EOF\) có hai đường cao \(FB\) và \(AE\) cắt nhau tại \(I\).
Suy ra \(I\) là trực tâm của \(\Delta OEF.\)
Do đó, \(OI \bot EF\) (1)
Xét \(\Delta OEM\) và \(\Delta OFM\), có:
\(OM\) là cạnh chung
\(ME = MF\) (do \(M\) là trung điểm của \(EF\))
\(OE = OF\) (câu a)
Do đó, \(\Delta OEM = \Delta OFM\) (c.c.c)
Suy ra \(\widehat {OME} = \widehat {OMF}\) (hai góc tương ứng)
Mà \(\widehat {OME} + \widehat {OMF} = 180^\circ \) (hai góc kề bù)
Do đó, \(\widehat {OME} = \widehat {OMF} = 90^\circ \) hay \(OM \bot EF\) (2)
Từ (1) và (2) suy ra \(O,I,M\) thẳng hàng.
Lời giải
a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:
\(M = \left\{ {5;6;7;....;23;24} \right\}\).
Do đó, có 20 kết quả có thể xảy ra.
b) Các kết quả thuận lợi cho biến cố \(N\) là: \(5;7;9;....;21;23.\)
Do đó, có \(\left( {23 - 5} \right):2 + 1 = 10\) kết quả thuận lợi cho biến cố này.
Vậy xác suất của biến cố \(N\) là \(\frac{{10}}{{20}} = \frac{1}{2}\).
c) Các kết quả thuận lợi cho biến cố \(P\) là: \(6;8;12;16;24\).
Do đó, có 5 kết quả thuận lợi cho biến cố này.
Vậy xác suất của biến cố \(P\) là \(\frac{5}{{20}} = \frac{1}{4}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.