Câu hỏi:

30/06/2025 5

1. Người ta dùng máy ảnh để chụp một người có chiều cao \[1,5{\rm{ m}}\] (như hình vẽ). Sau khi rửa phim thấy ảnh \[CD\] cao \[4{\rm{ cm}}\]. Biết khoảng cách từ phim đến vật kính của máy ảnh lúc chụp là \[ED = 6{\rm{ cm}}.\] Hỏi khoảng cách từ người đó đến vật kính máy ảnh một đoạn \[BE\] là bao nhiêu?
1. Người ta dùng máy ảnh để chụp một người có chiều cao \[1,5{\rm{ m}}\] (như hình vẽ). Sau khi rửa phim thấy ảnh \[CD\] cao \[4{\rm{ cm}}\]. Biết khoảng cách từ phim đến vật kính của máy ảnh lúc chụp là \[ED = 6{\rm{ cm}}.\] Hỏi khoảng cách từ người đó đến vật kính máy ảnh một đoạn \[BE\] là bao nhiêu?  2. Cho tam giác \[ABC\] vuông tại \[A\,\,\,\left( {AB < AC} \right),\] vẽ đường cao \[AH.\]  a) Chứng minh: .  b) Chứng minh: \(A{H^2} = HB \cdot HC\).  c) Trên tia \[HC,\] lấy điểm \(D\) sao cho \[HD = HA.\] Từ \(D\) vẽ đường thẳng song song \[AH\] cắt \[AC\] tại \[E.\] Chứng minh \[AE = AB.\] (ảnh 1)

2. Cho tam giác \[ABC\] vuông tại \[A\,\,\,\left( {AB < AC} \right),\] vẽ đường cao \[AH.\]

a) Chứng minh: .

b) Chứng minh: \(A{H^2} = HB \cdot HC\).

c) Trên tia \[HC,\] lấy điểm \(D\) sao cho \[HD = HA.\] Từ \(D\) vẽ đường thẳng song song \[AH\] cắt \[AC\] tại \[E.\] Chứng minh \[AE = AB.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. Đổi: \[1,5{\rm{ m}} = 150{\rm{ cm}}.\]

Ta có \(AB \bot BD;\,\,CD \bot BD\) nên \(CD\,{\rm{//}}\,AB\).

Suy ra \(\frac{{EB}}{{ED}} = \frac{{AB}}{{DC}}\) (theo định lí Thalès).

Do đó \(EB = \frac{{AB \cdot ED}}{{DC}} = \frac{{150 \cdot 6}}{4} = 225\,\,{\rm{(cm)}}\).

Vậy người đứng cách vật kính máy ảnh là \[225{\rm{ cm}}.\]

2.

1. Người ta dùng máy ảnh để chụp một người có chiều cao \[1,5{\rm{ m}}\] (như hình vẽ). Sau khi rửa phim thấy ảnh \[CD\] cao \[4{\rm{ cm}}\]. Biết khoảng cách từ phim đến vật kính của máy ảnh lúc chụp là \[ED = 6{\rm{ cm}}.\] Hỏi khoảng cách từ người đó đến vật kính máy ảnh một đoạn \[BE\] là bao nhiêu?  2. Cho tam giác \[ABC\] vuông tại \[A\,\,\,\left( {AB < AC} \right),\] vẽ đường cao \[AH.\]  a) Chứng minh: .  b) Chứng minh: \(A{H^2} = HB \cdot HC\).  c) Trên tia \[HC,\] lấy điểm \(D\) sao cho \[HD = HA.\] Từ \(D\) vẽ đường thẳng song song \[AH\] cắt \[AC\] tại \[E.\] Chứng minh \[AE = AB.\] (ảnh 2)

a) Xét \[\Delta ABH\] và \[\Delta CAB\] có:

\[\widehat {ABH} = \widehat {CBA}\;\,\left( {\widehat B\;\,{\rm{chung}}} \right)\]

\(\widehat {AHB} = \widehat {CAB}\;\left( { = 90^\circ } \right)\)

Do đó .

b) Xét hai tam giác vuông \[ABC\] và \[ABH\] có:

\(\widehat {ABC} + \widehat {ACB} = 180^\circ  - \widehat {BAC} = 90^\circ \)

\(\widehat {ABH} + \widehat {BAH} = 180^\circ  - \widehat {AHB} = 90^\circ \)

Do đó \(\widehat {ACB} = \widehat {BAH}\) (vì cùng phụ với \(\widehat {ABC}\))

Xét \[\Delta ABH\] và \[\Delta CAH\] có:

\(\widehat {BAH} = \widehat {ACH}\;\,\left( {{\rm{cmt}}} \right)\); \(\widehat {AHB} = \widehat {CHA}\;\,\left( { = 90^\circ } \right)\)

Do đó .

Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) hay \(A{H^2} = HB \cdot HC\) (đpcm).

c) Ta có \[AH \bot BC\] mà \[DE{\rm{ // }}AH\] nên suy ra \[DE \bot BC\].

Gọi \[K\] là hình chiếu của \[E\] lên \[AH\].

Từ đó suy ra tứ giác \[EDHK\] là hình chữ nhật có:

• \(\widehat {EKH} = 90^\circ \) nên \(\widehat {AKE} = 90^\circ \).

• \[EK = HD = HA\].

Lại có:

• \(\widehat {BAC} = \widehat {BAH} + \widehat {KAE} = 90^\circ \).

• \(\widehat {KAE} + \widehat {KEA} = 180^\circ  - \widehat {AKE} = 90^\circ \).

Nên suy ra \(\widehat {AEK} = \widehat {BAH}\) (vì cùng phụ với \(\widehat {KAE}\)).

Xét \[\Delta AKE\] và \[\Delta BHA\] có:

\(\widehat {AKE} = \widehat {BHA}\;\,\left( { = 90^\circ } \right)\); \(EK = AH\;\left( {{\rm{cmt}}} \right)\); \(\widehat {AEK} = \widehat {BAH}\;\left( {{\rm{cmt}}} \right)\)

Do đó \(\Delta AKE = \Delta BHA\;\,\left( {{\rm{g}}{\rm{.c}}{\rm{.g}}} \right)\).

Từ đó suy ra \[AE = AB\] (hai cạnh tương ứng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. a) Biểu đồ đã cho là biểu đồ đoạn thẳng.

Để thu được dữ liệu được biểu diễn ở biểu đồ trên, ta sử dụng phương pháp thu thập gián tiếp bằng cách truy cập website của Hiệp hội Cà phê – Ca cao Việt Nam.

b) Bảng thống kê tương ứng cho dữ liệu trong biểu đồ đã cho:

Giá cà phê 6 tháng cuối năm 2019 và năm 2020 của Việt Nam (USD/ tấn)

Tháng

Năm

Tháng 6

Tháng 7

Tháng 8

Tháng 9

Tháng 10

Tháng 11

Tháng 12

Năm 2019

1675

1719

1727

1825

1806

1750

1740

Năm 2020

1705

1787

1840

1886

1847

1924

2000

Nếu chọn một biểu đồ khác để biểu diễn dữ liệu trên, ta nên chọn loại biểu đồ cột kép.

c) Ta có bảng thống kê bổ sung sự tăng giá mỗi tấn cà phê của năm 2020 so với năm 2019 như sau:

Giá cà phê 6 tháng cuối năm 2019 và năm 2020 của Việt Nam (USD/ tấn)

Tháng

Năm

Tháng 6

Tháng 7

Tháng 8

Tháng 9

Tháng 10

Tháng 11

Tháng 12

 

Năm 2019

1675

1719

1727

1825

1806

1750

1740

 

Năm 2020

1705

1787

1840

1886

1847

1924

2000

 

Sự tăng giá cà phê mỗi tấn

30

68

113

61

41

174

260

 

Vậy, trong sáu tháng cuối năm 2020, tháng 12 có sự tăng giá cà phê mạnh nhất so với cùng kì năm trước.

2. a) Tổng khối lượng các loại hạt điều thu hoạch được là:

\(1\,\,450 + 2\,\,230 + 1\,\,860 = 5\,\,540\) (kg).

Vậy tổng khối lượng các loại hạt điều thu hoạch được là \(5\,\,540\) kg.

b) Tổng khối lượng hạt điều loại 2 và loại 3 là: \(2\,\,230 + 1\,\,860 = 4\,\,090\) (kg).

Xác suất thực nghiệm của biến cố B là \(P\left( B \right) = \frac{{4\,\,090}}{{5\,\,540}} \approx 0,7383.\)

c) Gọi \(k\) là số kilôgam hạt điều loại 1 trong \(100\) kg hạt điều sau khi phân loại.

Ta có \[P\left( A \right) = \frac{k}{{100}} \approx 0,2617\] suy ra \(k \approx 0,2617 \cdot 100 = 26,17 \approx 26\) (kg).

Vậy có khoảng 26 kg hạt điều loại 1 trong 100 kg hạt điều sau khi phân loại.

Lời giải

1. a) \[5\left( {x - 3} \right) + 5 = 4x + 1\]

\[5x - 15 + 5 = 4x + 1\]

\[5x - 4x = 1 + 15 - 5\]

\[x = 11\]

Vậy nghiệm của phương trình là \[x = 11\].

b) \[{x^3} - 1 + \left( {1 - x} \right)\left( {x - 5} \right) = 0\]

\[{x^3} - 1 + x - {x^2} - 5 + 5x = 0\]

\[{x^3} - {x^2} + 6x - 6 = 0\]

\[{x^2}\left( {x - 1} \right) + 6\left( {x - 1} \right) = 0\]

\[\left( {x - 1} \right)\left( {{x^2} + 6} \right) = 0\]

\[x - 1 = 0\] (vì \[{x^2} + 6 > 0\])

\[x = 1\]

Vậy nghiệm của phương trình là \[x = 1\]

2. Gọi x (đồng) là giá ban đầu của điện thoại \(\left( {x > 0} \right)\).

Số tiền được giảm 10% giá ban đầu là \(10\% x = 0,1x\) (đồng).

Giá của cái điện thoại sau khi giảm 10% giá ban đầu là \(x\left( {100\%  - 10\% } \right) = 0,9x\) (đồng).

Số tiền được giảm 5% giá đã giảm là \(5\% .0,9x = 0,045x\) (đồng).

Theo đề bài ta có phương trình:

            \(0,1x + 0,045x = 3\;915\;000\)

\(0,145x = 3\;915\;000\)

            \(x = 27\;000\;000\) (nhận).

Vậy giá ban đầu của cái điện thoại iPhone 16 Pro là \[27\,\,000\,\,000\] đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP