Câu hỏi:
30/06/2025 26(2,5 điểm) Một hộp có 26 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số \(1;2;3;...;26.\) Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp.
a) Viết tập hợp \(A\) gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.
b) Xét biến cố \(Y\): “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3”. Nêu những kết quả thuận lợi cho biến cố \(Y\).
c) Tính xác suất của biến cố \(Y:\) “Số ghi trên thẻ được rút ra là số chia hết cho 3”.
d) Xét biến cố \(Z\): “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1”. Tính xác suất của biến cố \(Z.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là: \(A = \left\{ {1;2;3;...;26} \right\}\).
Do đó, có 26 kết quả có thể xảy ra khi rút ngẫu nhiên một thẻ trong hộp.
b) Kết quả thuận lợi của biến cố \(Y\): “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” là:
\(Y = \left\{ {3;6;9;12;15;18;21;24} \right\}\). Do đó, có \(8\) kết quả thuận lợi cho biến cố này.
c) Xác suất của biến cố \(Y:\) “Số ghi trên thẻ được rút ra là số chia hết cho 3” là: \(\frac{8}{{26}} = \frac{4}{{13}}\).
d) Kết quả thuận lợi cho biến cố \(Z\): “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1” là: \(Z = \left\{ {1;21} \right\}\). Do đó, có hai kết quả thuận lợi cho biến cố này.
Vậy xác suất của biến cố \(Z\): “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1” là \(\frac{2}{{26}} = \frac{1}{{13}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Xét
\(\Delta AMB\) và \(\Delta AMC\), có:
\(AM\) chung (gt)
\(BM = MC\) (gt)
\(AB = AC\) (\(\Delta ABC\) cân)
Do đó, \(\Delta AMB = \Delta AMC\) (c.c.c)
Suy ra \(\widehat {MAB} = \widehat {MAC}\) (hai cạnh tương ứng)
Do đó, \(AM\) là tia phân giác của \(\widehat {BAC}\).
b) Xét \(\Delta AME\) và \(\Delta AMF\), có:
\(\widehat {MEA} = \widehat {MFA} = 90^\circ \) (gt)
\(\widehat {EAM} = \widehat {FAM}\)
\(AM\) chung (gt)
Do đó, \(\Delta AME = \Delta AMF\) (ch – gn)
Suy ra \(ME = MF\) (hai cạnh tương ứng)
Từ đó, ta có: \(\Delta MEF\) cân tại \(M\).
c) Vì \(\Delta AME = \Delta AMF\) (cmt) nên \(AE = AF\) (hai cạnh tương ứng).
Mà \(AB = AC\) và ta có: \(\left\{ \begin{array}{l}AB = AE + EB\\AC = AF + FC\end{array} \right.\) suy ra \(EB = FC\).
Lại có \(EB = KB\) nên \(KB = FC\).
Xét \(\Delta BKM\) và \(\Delta CFM\), có:
\(BM = MC\) (gt)
\(\widehat {FCM} = \widehat {MBK}\) (so le trong)
\(KB = FC\) (cmt)
Do đó, \(\Delta BKM = \Delta CFM\) (c.g.c)
Suy ra \(\widehat {BMK} = \widehat {CMF}\) (hai góc tương ứng)
Mà hai góc ở vị trí đối đỉnh nên \(K,M,F\) thẳng hàng.
Lại có \(KM = MF\) (hai cạnh tương ứng)
Do đó, \(M\) là trung điểm của \(KF\).
Lời giải
Hướng dẫn giải
Từ hình minh họa, xét tam giác \(ABC\), có \(\widehat B > \widehat C{\rm{ }}\left( {75^\circ > 35^\circ } \right)\) nên \(AC > AB\) (quan hệ giữa góc và cạnh đối diện trong tam giác).
Do đó, bạn Đào đi đến nhà bạn Lan ngắn hơn quãng đường bạn Đào đi đến nhà bạn Hồng.
Vậy các bạn nên học nhóm ở nhà bạn Lan.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.