Câu hỏi:

01/07/2025 26 Lưu

1. Giải các phương trình sau:

a) \[4x--5 = 2x + 1\];                                             

b) \(\frac{{x - 2}}{6} - \frac{x}{2} = \frac{{5 - 2x}}{3}\).

2. Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:

Tính tuổi của hai người, biết rằng cách đây 10 năm tuổi người thứ nhất gấp 3 lần tuổi của người thứ hai và sau đây hai năm, tuổi người thứ hai sẽ bằng một nửa tuổi của người thứ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. a) \[4x--5 = 2x + 1\]

\[4x--2x = 5 + 1\]

\[2x = 6\]

\[x = 3\]

Vậy nghiệm của phương trình là \[x = 3\].

b) \(\frac{{x - 2}}{6} - \frac{x}{2} = \frac{{5 - 2x}}{3}\)

\(\frac{{x - 2}}{6} - \frac{{3x}}{6} = \frac{{2\left( {5 - 2x} \right)}}{6}\)

\(x - 2 - 3x = 2\left( {5 - 2x} \right)\)

\( - 2x - 2 = 10 - 4x\)

\(2x = 12\).

\(x = 6\)

Vậy nghiệm của phương trình là \(x = 6.\)

 

2. Gọi số tuổi hiện nay của người thứ nhất là x (tuổi), x nguyên, dương.

Số tuổi người thứ nhất cách đây 10 năm là: \[x - 10\] (tuổi).

Số tuổi người thứ hai cách đây 10 năm là: \(\frac{{x - 10}}{3}\) (tuổi).

Sau đây 2 năm tuổi người thứ nhất là: \[x + 2\] (tuổi).

 Sau đây 2 năm tuổi người thứ hai là: \(\frac{{x + 2}}{2}\) (tuổi).

Theo bài ra ta có phương trình phương trình như sau:

\(\frac{{x + 2}}{2} = \frac{{x - 10}}{3} + 10 + 2\)

\(\frac{{x + 2}}{2} - \frac{{x - 10}}{3} = 12\)
\(\frac{{3\left( {x + 2} \right)}}{6} - \frac{{2\left( {x - 10} \right)}}{6} = \frac{{72}}{6}\)

\(3\left( {x + 2} \right) - 2\left( {x - 10} \right) = 72\)

\(3x + 6 - 2x + 20 = 72\)

\(3x + 6 - 2x + 20 = 72\)

\[x = 46\] (TMĐK).

Khi đó, số tuổi hiện nay của người thứ hai là: \(\frac{{46 + 2}}{2} - 2 = 12\) (tuổi).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Ta có \(AB \bot AE;\,\,CD \bot AE\) nên \(CD\,{\rm{//}}\,AB\).

Xét tam giác \(ABE\)\(CD\,{\rm{//}}\,AB\), ta có

\[\,\frac{{DE}}{{AB}} = \frac{{EC}}{{EA}}\] (hệ quả của định lí Thalès).

Hay \[\frac{{1,5}}{{AB}} = \frac{2}{{2 + 8}}\] suy ra \[AB = 7,5\,\,{\rm{m}}\].

Vậy chiều cao của cây là \[7,5\,\,{\rm{m}}\].

2.

1. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây  (kết quả làm tròn đến chữ số thập phân thứ nhất).  2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]  a) Chứng minh: .  b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).  c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và  \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 2)

a) Xét \[\Delta ABK\]\[\Delta CBF\] có:

\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)

Do đó ΔABK  ΔCBF  (g.g) .

b) Xét \[\Delta AEB\]\[\Delta ACF\] có:

\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\); \(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)

Do đó ΔAEB  ΔACF  (g.g)

Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AE \cdot AC = AF \cdot AB\) (đpcm)

c) Xét \[\Delta BFC\] vuông tại \[F\] \[O\] là trung điểm của \[BC\] nên \(FO = \frac{{BC}}{2}\).

Xét \[\Delta BEC\] vuông tại \[E\] \[O\] là trung điểm của \[BC\] nên \(EO = \frac{{BC}}{2}\).

Do đó \[FO = EO = \frac{{BC}}{2}\].              (1)

Xét \[\Delta AEH\] vuông tại \[E\]\[I\] là trung điểm của \[AH\] nên \(EI = \frac{{AH}}{2}\).

Xét \[\Delta AFH\] vuông tại \[F\]\[I\] là trung điểm của \[AH\] nên \(FI = \frac{{AH}}{2}\).

Do đó \[FI = EI = \frac{{AH}}{2}\].  (2)

Từ (1) và (2) ta suy ra được \[OI\] là đường trung trực của cạnh \[EF\].

Khi đó \[OI \bot EF\] hay \[OI \bot DN\].

Do đó \[DN\] là đường cao của \[\Delta DOI\].

Xét \[\Delta DOI\]\[DN\]\[IK\] là đường cao và \[N\] là giao của \[DN\] \[IK\].

Do đó \[N\] là trực tâm của tam giác \[DOI\].

Vậy \[OI \bot DI\] (đpcm).

Lời giải

1. a) Có \(5 + 3 + 4 + 2 = 14\) kết quả có thể xảy ra và các kết quả là đồng khả năng.

Vậy có 14 kết quả là đồng khả năng.

b) Xác suất của biến cố E là \(P\left( E \right) = \frac{2}{{14}} = \frac{1}{7}.\)

c) Số kết quả thuận lợi lấy được chiếc bút màu cam hoặc màu xanh là: \(3 + 4 = 7.\)

Xác suất của biến cố F là \(P\left( F \right) = \frac{7}{{14}} = \frac{1}{2}.\)