Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?
Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?
Quảng cáo
Trả lời:
Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:
\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];
\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];
\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].
Và ngược lại đổi vị trí hai số trong các cặp số trên.
Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].
Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.
Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
\[4x--2x = 5 + 1\] \[2x = 6\] \[x = 3\] Vậy nghiệm của phương trình là \[x = 3\]. |
b) \(\frac{{x - 2}}{6} - \frac{x}{2} = \frac{{5 - 2x}}{3}\) \(\frac{{x - 2}}{6} - \frac{{3x}}{6} = \frac{{2\left( {5 - 2x} \right)}}{6}\) \(x - 2 - 3x = 2\left( {5 - 2x} \right)\) \( - 2x - 2 = 10 - 4x\) \(2x = 12\). \(x = 6\) Vậy nghiệm của phương trình là \(x = 6.\)
|
2. Gọi số tuổi hiện nay của người thứ nhất là x (tuổi), x nguyên, dương.
Số tuổi người thứ nhất cách đây 10 năm là: \[x - 10\] (tuổi).
Số tuổi người thứ hai cách đây 10 năm là: \(\frac{{x - 10}}{3}\) (tuổi).
Sau đây 2 năm tuổi người thứ nhất là: \[x + 2\] (tuổi).
Sau đây 2 năm tuổi người thứ hai là: \(\frac{{x + 2}}{2}\) (tuổi).
Theo bài ra ta có phương trình phương trình như sau:
\(\frac{{x + 2}}{2} = \frac{{x - 10}}{3} + 10 + 2\)
\(\frac{{x + 2}}{2} - \frac{{x - 10}}{3} = 12\)
\(\frac{{3\left( {x + 2} \right)}}{6} - \frac{{2\left( {x - 10} \right)}}{6} = \frac{{72}}{6}\)
\(3\left( {x + 2} \right) - 2\left( {x - 10} \right) = 72\)
\(3x + 6 - 2x + 20 = 72\)
\(3x + 6 - 2x + 20 = 72\)
\[x = 46\] (TMĐK).
Khi đó, số tuổi hiện nay của người thứ hai là: \(\frac{{46 + 2}}{2} - 2 = 12\) (tuổi).
Lời giải
1. a) Có \(5 + 3 + 4 + 2 = 14\) kết quả có thể xảy ra và các kết quả là đồng khả năng.
Vậy có 14 kết quả là đồng khả năng.
b) Xác suất của biến cố E là \(P\left( E \right) = \frac{2}{{14}} = \frac{1}{7}.\)
c) Số kết quả thuận lợi lấy được chiếc bút màu cam hoặc màu xanh là: \(3 + 4 = 7.\)
Xác suất của biến cố F là \(P\left( F \right) = \frac{7}{{14}} = \frac{1}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Thanh long là một loại cây chịu hạn, không kén đất, rất thích hợp với điều kiện khí hậu và thổ nhưỡng của tỉnh Bình Thuận. Giá bán 1 kg thanh long ruột đỏ loại I là \[32{\rm{ }}000\] đồng. a) Viết công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I. Hỏi \[y\] có phải là hàm số của \[x\] không? Vì sao? b) Tính số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid2-1751333438.png)
![1. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây (kết quả làm tròn đến chữ số thập phân thứ nhất). 2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\] a) Chứng minh: . b) Chứng minh: \(AE \cdot AC = AF \cdot AB\). c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid4-1751333535.png)