Câu hỏi:

19/08/2025 61 Lưu

Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:

\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];

\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];

\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].

Và ngược lại đổi vị trí hai số trong các cặp số trên.

Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].

Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.

Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Công thức biểu thị số tiền \[y\] (đồng) thu được khi bán \[x\,\,\left( {{\rm{kg}}} \right)\] thanh long ruột đỏ loại I là:

\[y = 32\,\,000x.\]

Khi đó \[y\] là hàm số của \[x\], vì với mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].

b) Số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là:

\[32\,\,000 \cdot 8 = 256\,\,000\] (đồng).

Vậy số tiền thu được khi bán 8 kg thanh long ruột đỏ loại I là \[256\,\,000\] đồng.

Lời giải

1. Ta có \(AB \bot AE;\,\,CD \bot AE\) nên \(CD\,{\rm{//}}\,AB\).

Xét tam giác \(ABE\)\(CD\,{\rm{//}}\,AB\), ta có

\[\,\frac{{DE}}{{AB}} = \frac{{EC}}{{EA}}\] (hệ quả của định lí Thalès).

Hay \[\frac{{1,5}}{{AB}} = \frac{2}{{2 + 8}}\] suy ra \[AB = 7,5\,\,{\rm{m}}\].

Vậy chiều cao của cây là \[7,5\,\,{\rm{m}}\].

2.

1. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây  (kết quả làm tròn đến chữ số thập phân thứ nhất).  2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]  a) Chứng minh: .  b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).  c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và  \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 2)

a) Xét \[\Delta ABK\]\[\Delta CBF\] có:

\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)

Do đó ΔABK  ΔCBF  (g.g) .

b) Xét \[\Delta AEB\]\[\Delta ACF\] có:

\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\); \(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)

Do đó ΔAEB  ΔACF  (g.g)

Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AE \cdot AC = AF \cdot AB\) (đpcm)

c) Xét \[\Delta BFC\] vuông tại \[F\] \[O\] là trung điểm của \[BC\] nên \(FO = \frac{{BC}}{2}\).

Xét \[\Delta BEC\] vuông tại \[E\] \[O\] là trung điểm của \[BC\] nên \(EO = \frac{{BC}}{2}\).

Do đó \[FO = EO = \frac{{BC}}{2}\].              (1)

Xét \[\Delta AEH\] vuông tại \[E\]\[I\] là trung điểm của \[AH\] nên \(EI = \frac{{AH}}{2}\).

Xét \[\Delta AFH\] vuông tại \[F\]\[I\] là trung điểm của \[AH\] nên \(FI = \frac{{AH}}{2}\).

Do đó \[FI = EI = \frac{{AH}}{2}\].  (2)

Từ (1) và (2) ta suy ra được \[OI\] là đường trung trực của cạnh \[EF\].

Khi đó \[OI \bot EF\] hay \[OI \bot DN\].

Do đó \[DN\] là đường cao của \[\Delta DOI\].

Xét \[\Delta DOI\]\[DN\]\[IK\] là đường cao và \[N\] là giao của \[DN\] \[IK\].

Do đó \[N\] là trực tâm của tam giác \[DOI\].

Vậy \[OI \bot DI\] (đpcm).