Câu hỏi:
01/07/2025 9
Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?
Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?
Quảng cáo
Trả lời:
Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:
\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];
\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];
\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].
Và ngược lại đổi vị trí hai số trong các cặp số trên.
Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].
Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.
Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Ta có \(AB \bot AE;\,\,CD \bot AE\) nên \(CD\,{\rm{//}}\,AB\).
Xét tam giác \(ABE\) có \(CD\,{\rm{//}}\,AB\), ta có
\[\,\frac{{DE}}{{AB}} = \frac{{EC}}{{EA}}\] (hệ quả của định lí Thalès).
Hay \[\frac{{1,5}}{{AB}} = \frac{2}{{2 + 8}}\] suy ra \[AB = 7,5\,\,{\rm{m}}\].
Vậy chiều cao của cây là \[7,5\,\,{\rm{m}}\].
2.
![1. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao \[1,5\,\,{\rm{m}}\] so với mặt đất, chân cọc cách gốc cây \[8\,\,{\rm{m}}\] và cách bóng của đỉnh cọc \[2\,\,{\rm{m}}.\] Tính chiều cao của cây (kết quả làm tròn đến chữ số thập phân thứ nhất). 2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\] a) Chứng minh: . b) Chứng minh: \(AE \cdot AC = AF \cdot AB\). c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid3-1751333517.png)
a) Xét \[\Delta ABK\] và \[\Delta CBF\] có:
\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)
Do đó .
b) Xét \[\Delta AEB\] và \[\Delta ACF\] có:
\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\); \(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)
Do đó
Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AE \cdot AC = AF \cdot AB\) (đpcm)
c) Xét \[\Delta BFC\] vuông tại \[F\] có \[O\] là trung điểm của \[BC\] nên \(FO = \frac{{BC}}{2}\).
Xét \[\Delta BEC\] vuông tại \[E\] có \[O\] là trung điểm của \[BC\] nên \(EO = \frac{{BC}}{2}\).
Do đó \[FO = EO = \frac{{BC}}{2}\]. (1)
Xét \[\Delta AEH\] vuông tại \[E\] có \[I\] là trung điểm của \[AH\] nên \(EI = \frac{{AH}}{2}\).
Xét \[\Delta AFH\] vuông tại \[F\] có \[I\] là trung điểm của \[AH\] nên \(FI = \frac{{AH}}{2}\).
Do đó \[FI = EI = \frac{{AH}}{2}\]. (2)
Từ (1) và (2) ta suy ra được \[OI\] là đường trung trực của cạnh \[EF\].
Khi đó \[OI \bot EF\] hay \[OI \bot DN\].
Do đó \[DN\] là đường cao của \[\Delta DOI\].
Xét \[\Delta DOI\] có \[DN\] và \[IK\] là đường cao và \[N\] là giao của \[DN\] và \[IK\].
Do đó \[N\] là trực tâm của tam giác \[DOI\].
Vậy \[OI \bot DI\] (đpcm).
Lời giải
\[4x--2x = 5 + 1\] \[2x = 6\] \[x = 3\] Vậy nghiệm của phương trình là \[x = 3\]. |
b) \(\frac{{x - 2}}{6} - \frac{x}{2} = \frac{{5 - 2x}}{3}\) \(\frac{{x - 2}}{6} - \frac{{3x}}{6} = \frac{{2\left( {5 - 2x} \right)}}{6}\) \(x - 2 - 3x = 2\left( {5 - 2x} \right)\) \( - 2x - 2 = 10 - 4x\) \(2x = 12\). \(x = 6\) Vậy nghiệm của phương trình là \(x = 6.\)
|
2. Gọi số tuổi hiện nay của người thứ nhất là x (tuổi), x nguyên, dương.
Số tuổi người thứ nhất cách đây 10 năm là: \[x - 10\] (tuổi).
Số tuổi người thứ hai cách đây 10 năm là: \(\frac{{x - 10}}{3}\) (tuổi).
Sau đây 2 năm tuổi người thứ nhất là: \[x + 2\] (tuổi).
Sau đây 2 năm tuổi người thứ hai là: \(\frac{{x + 2}}{2}\) (tuổi).
Theo bài ra ta có phương trình phương trình như sau:
\(\frac{{x + 2}}{2} = \frac{{x - 10}}{3} + 10 + 2\)
\(\frac{{x + 2}}{2} - \frac{{x - 10}}{3} = 12\)
\(\frac{{3\left( {x + 2} \right)}}{6} - \frac{{2\left( {x - 10} \right)}}{6} = \frac{{72}}{6}\)
\(3\left( {x + 2} \right) - 2\left( {x - 10} \right) = 72\)
\(3x + 6 - 2x + 20 = 72\)
\(3x + 6 - 2x + 20 = 72\)
\[x = 46\] (TMĐK).
Khi đó, số tuổi hiện nay của người thứ hai là: \(\frac{{46 + 2}}{2} - 2 = 12\) (tuổi).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.