Câu hỏi:

01/07/2025 7

1. Bóng của một cái tháp trên mặt đất có độ dài \[BC = 63{\rm{ m}}.\] Cùng thời điểm đó, một cây cột \[DE\] cao 2 m cắm vuông góc với mặt đất có bóng dài 3 m (hình vẽ). Tính chiều cao của tháp.

1. Bóng của một cái tháp trên mặt đất có độ dài \[BC = 63{\rm{ m}}.\] Cùng thời điểm đó, một cây cột \[DE\] cao 2 m cắm vuông góc với mặt đất có bóng dài 3 m (hình vẽ). Tính chiều cao của tháp.  2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]  a) Chứng minh:   .  b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).  c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và  \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 1)

2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]

a) Chứng minh: ΔABK  ΔCBF  .

b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).

c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và  \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. Ta có \(AB \bot BC;\,\,DE \bot BC\) nên \(DE\,{\rm{//}}\,AB\).

Xét tam giác \(ABC\)\(DE\,{\rm{//}}\,AB\), ta có

\[\frac{{DE}}{{AB}} = \frac{{CE}}{{CB}}\] (hệ quả của định lí Thalès).

Hay \[\frac{2}{{AB}} = \frac{3}{{63}}\] suy ra \[AB = 42\,\,{\rm{m}}\].

Vậy chiều cao của tháp là 42 m.

2.

1. Bóng của một cái tháp trên mặt đất có độ dài \[BC = 63{\rm{ m}}.\] Cùng thời điểm đó, một cây cột \[DE\] cao 2 m cắm vuông góc với mặt đất có bóng dài 3 m (hình vẽ). Tính chiều cao của tháp.  2. Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\] và \[CF\] cắt nhau tại \[H.\]  a) Chứng minh:   .  b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).  c) Gọi \[N\] là giao điểm của \[AK\] và \[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\] và \[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] và  \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\] (ảnh 2)

a) Xét \[\Delta ABK\] và \[\Delta CBF\] có:

\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)

Do đó ΔABK  ΔCBF  (g.g) .

b) Xét \[\Delta AEB\]\[\Delta ACF\] có:

\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\); \(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)

Do đó

Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AE \cdot AC = AF \cdot AB\) (đpcm)

c) Xét \[\Delta BFC\] vuông tại \[F\] \[O\] là trung điểm của \[BC\] nên \(FO = \frac{{BC}}{2}\).

Xét \[\Delta BEC\] vuông tại \[E\] \[O\] là trung điểm của \[BC\] nên \(EO = \frac{{BC}}{2}\).

Do đó \[FO = EO = \frac{{BC}}{2}\].              (1)

Xét \[\Delta AEH\] vuông tại \[E\]\[I\] là trung điểm của \[AH\] nên \(EI = \frac{{AH}}{2}\).

Xét \[\Delta AFH\] vuông tại \[F\]\[I\] là trung điểm của \[AH\] nên \(FI = \frac{{AH}}{2}\).

Do đó \[FI = EI = \frac{{AH}}{2}\].  (2)

Từ (1) và (2) ta suy ra được \[OI\] là đường trung trực của cạnh \[EF\].

Khi đó \[OI \bot EF\] hay \[OI \bot DN\].

Do đó \[DN\] là đường cao của \[\Delta DOI\].

Xét \[\Delta DOI\]\[DN\]\[IK\] là đường cao và \[N\] là giao của \[DN\] \[IK\].

Do đó \[N\] là trực tâm của tam giác \[DOI\].

Vậy \[OI \bot DI\] (đpcm).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x\] (viên) số bi đỏ trong túi \[\left( {0 < x < 48} \right).\]

Khi đó, số bi xanh trong túi là \[\left( {48--x} \right)\] viên.

Xác suất lấy được viên bi màu đỏ là \[\frac{x}{{48}}.\]

Xác suất lấy được viên bi màu xanh là: \[\frac{{48 - x}}{{48}}.\]

Theo đề bài, xác suất lấy được viên bi màu đỏ bằng 92% xác suất lấy được viên bi màu xanh nên ta có phương trình \[\frac{x}{{48}} = 92\%  \cdot \frac{{48 - x}}{{48}}\]

\[x = 0,92\left( {48 - x} \right)\]

\[x = 44,16 - 0,92x\]

\[1,92x = 44,16\]

\[x = 23\] (TMĐK)

Vậy số viên bi màu đỏ và viên bi màu xanh có trong túi lần lượt là 23 viên và 25 viên.

Lời giải

a) Công thức \[y\] theo \[x\] là \[y = 1200\,\,000 + \left( {x--7} \right) \cdot 100\,\,000\] (đồng)

Khi đó, \[y\] là hàm số của \[x\] vì mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].

b) Tổng số tiền người đó phải trả là:

\[1200\,\,000 + \left( {9--7} \right) \cdot 100\,\,000 = 1400\,\,000\] (đồng).

Vậy người đó phải trả tổng cộng \[1400\,\,000\] đồng.

2. Gọi x (đồng) là giá ban đầu của điện thoại \(\left( {x > 0} \right)\).

Số tiền được giảm 10% giá ban đầu là \(10\% x = 0,1x\) (đồng).

Giá của cái điện thoại sau khi giảm 10% giá ban đầu là \(x\left( {100\%  - 10\% } \right) = 0,9x\) (đồng).

Số tiền được giảm 5% giá đã giảm là \(5\% .0,9x = 0,045x\) (đồng).

Theo đề bài ta có phương trình:

            \(0,1x + 0,045x = 3\;915\;000\)

\(0,145x = 3\;915\;000\)

            \(x = 27\;000\;000\) (nhận).

Vậy giá ban đầu của cái điện thoại iPhone 16 Pro là \[27\,\,000\,\,000\] đồng.

Câu 3

1. Giải các phương trình sau:

a) \[7x - \left( {12 + 5x} \right) = 6\];                   

b) \(\frac{{8x - 3}}{4} - \frac{{3x - 2}}{2} = \frac{{2x - 1}}{2} + \frac{{x + 3}}{4}\).

2. Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:

Anh Long muốn mua một điện thoại di động iPhone 16 Pro để tặng vợ. Cửa hàng di động có chương trình khuyến mãi lớn, giảm 10% so với giá ban đầu. Do anh Long là khách hàng VIP nên được giảm thêm 5% so với giá đã giảm. Tổng số tiền giảm hai lần là \[3\,\,915\,\,000\] đồng. Hỏi giá ban đầu của điện thoại iPhone 16 Pro là bao nhiêu?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP