Câu hỏi:
01/07/2025 7
Trong túi đựng 48 viên bi có cùng kích thước và khối lượng với hai màu đỏ và xanh. Lấy ngẫu nhiên một viên bi từ túi. Biết rằng xác suất lấy được viên bi màu đỏ bằng 92% xác suất lấy được viên bi màu xanh. Tính số viên bi màu đỏ và số viên bi màu xanh có trong túi.
Quảng cáo
Trả lời:
Gọi \[x\] (viên) số bi đỏ trong túi \[\left( {0 < x < 48} \right).\]
Khi đó, số bi xanh trong túi là \[\left( {48--x} \right)\] viên.
Xác suất lấy được viên bi màu đỏ là \[\frac{x}{{48}}.\]
Xác suất lấy được viên bi màu xanh là: \[\frac{{48 - x}}{{48}}.\]
Theo đề bài, xác suất lấy được viên bi màu đỏ bằng 92% xác suất lấy được viên bi màu xanh nên ta có phương trình \[\frac{x}{{48}} = 92\% \cdot \frac{{48 - x}}{{48}}\]
\[x = 0,92\left( {48 - x} \right)\]
\[x = 44,16 - 0,92x\]
\[1,92x = 44,16\]
\[x = 23\] (TMĐK)
Vậy số viên bi màu đỏ và viên bi màu xanh có trong túi lần lượt là 23 viên và 25 viên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Công thức \[y\] theo \[x\] là \[y = 1200\,\,000 + \left( {x--7} \right) \cdot 100\,\,000\] (đồng)
Khi đó, \[y\] là hàm số của \[x\] vì mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].
b) Tổng số tiền người đó phải trả là:
\[1200\,\,000 + \left( {9--7} \right) \cdot 100\,\,000 = 1400\,\,000\] (đồng).
Vậy người đó phải trả tổng cộng \[1400\,\,000\] đồng.
2. Gọi x (đồng) là giá ban đầu của điện thoại \(\left( {x > 0} \right)\).
Số tiền được giảm 10% giá ban đầu là \(10\% x = 0,1x\) (đồng).
Giá của cái điện thoại sau khi giảm 10% giá ban đầu là \(x\left( {100\% - 10\% } \right) = 0,9x\) (đồng).
Số tiền được giảm 5% giá đã giảm là \(5\% .0,9x = 0,045x\) (đồng).
Theo đề bài ta có phương trình:
\(0,1x + 0,045x = 3\;915\;000\)
\(0,145x = 3\;915\;000\)
\(x = 27\;000\;000\) (nhận).
Vậy giá ban đầu của cái điện thoại iPhone 16 Pro là \[27\,\,000\,\,000\] đồng.
Câu 2
a) \[7x - \left( {12 + 5x} \right) = 6\];
b) \(\frac{{8x - 3}}{4} - \frac{{3x - 2}}{2} = \frac{{2x - 1}}{2} + \frac{{x + 3}}{4}\).
2. Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:
Anh Long muốn mua một điện thoại di động iPhone 16 Pro để tặng vợ. Cửa hàng di động có chương trình khuyến mãi lớn, giảm 10% so với giá ban đầu. Do anh Long là khách hàng VIP nên được giảm thêm 5% so với giá đã giảm. Tổng số tiền giảm hai lần là \[3\,\,915\,\,000\] đồng. Hỏi giá ban đầu của điện thoại iPhone 16 Pro là bao nhiêu?
a) \[7x - \left( {12 + 5x} \right) = 6\];
b) \(\frac{{8x - 3}}{4} - \frac{{3x - 2}}{2} = \frac{{2x - 1}}{2} + \frac{{x + 3}}{4}\).
2. Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:
Anh Long muốn mua một điện thoại di động iPhone 16 Pro để tặng vợ. Cửa hàng di động có chương trình khuyến mãi lớn, giảm 10% so với giá ban đầu. Do anh Long là khách hàng VIP nên được giảm thêm 5% so với giá đã giảm. Tổng số tiền giảm hai lần là \[3\,\,915\,\,000\] đồng. Hỏi giá ban đầu của điện thoại iPhone 16 Pro là bao nhiêu?
Lời giải
2. Gọi x (đồng) là giá ban đầu của điện thoại \(\left( {x > 0} \right)\).
Số tiền được giảm 10% giá ban đầu là \(10\% x = 0,1x\) (đồng).
Giá của cái điện thoại sau khi giảm 10% giá ban đầu là \(x\left( {100\% - 10\% } \right) = 0,9x\) (đồng).
Số tiền được giảm 5% giá đã giảm là \(5\% .0,9x = 0,045x\) (đồng).
Theo đề bài ta có phương trình:
\(0,1x + 0,045x = 3\;915\;000\)
\(0,145x = 3\;915\;000\)
\(x = 27\;000\;000\) (nhận).
Vậy giá ban đầu của cái điện thoại iPhone 16 Pro là \[27\,\,000\,\,000\] đồng.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.