Câu hỏi:

27/11/2025 137 Lưu

Cho hàm số \(\left( P \right):y = a{x^2}{\rm{ }}\left( {a \ne 0} \right)\).

a) Tìm \(a\) biết đồ thị của hàm số đi qua điểm \(A\left( { - 2;8} \right).\)

b) Vẽ đồ thị hàm số với hệ số với hệ số \(a\) vừa tìm được.

c) Tìm các điểm thuộc đồ thị hàm số trên có tung độ \(y = 2.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

     a) Thay \(x =  - 2,y = 8\) vào \(\left( P \right)\), ta được: \(8 = a.{\left( { - 2} \right)^2}\) hay \(4a = 8\) nên \(a = 2.\)

Vậy \(a = 2\) thì ta được hàm số \(\left( P \right):y = 2{x^2}\) đi qua điểm \(A\left( { - 2;8} \right).\)

     b) Ta có bảng giá trị của hàm số \(\left( P \right):y = 2{x^2}\) như sau:

\(x\)

\( - 2\)

\( - 1\)

\(0\)

\(1\)

\(2\)

\(y\)

\(8\)

\(2\)

\(0\)

\(2\)

\(8\)

Do đó, đồ thị hàm số \(\left( P \right):y = 2{x^2}\) đi qua các điểm có tọa độ \(\left( { - 2;8} \right);\left( { - 1;2} \right);\left( {0;0} \right);\left( {1;2} \right);\)\(\left( {2;8} \right)\).

Ta có đồ thị hàm số như sau:

Cho hàm số \(\left( P \right):y = a{x^2}{\rm{ }}\left( {a \ne 0} \right)\). 	a) Tìm \(a\) biết đồ thị của hàm số đi qua điểm \(A\left( { - 2;8} \right).\) 	b) Vẽ đồ thị hàm số với hệ số với hệ số \(a\) vừa tìm được. 	c) Tìm các điểm thuộc đồ thị hàm số trên có tung độ \(y = 2.\) (ảnh 1)

c) Ta có: \(\left( P \right):y = 2{x^2}\), thay \(y = 2,\) ta được: \(2{x^2} = 2\), suy ra \({x^2} = 1\) nên \(x = 1\) hoặc \(x =  - 1.\)

Do đó, các điểm thuộc đồ thị hàm số \(\left( P \right):y = 2{x^2}\) có tung độ \(y = 2\) là \(\left( {1;2} \right)\) và \(\left( { - 1;2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. a) Xét các phương trình trên, ta có các phương trình bậc hai một ẩn là:

\(2{x^2} - 5x - 3 = 0\) và \({x^2} - 7x + 4 = 0.\)

• Với phương trình \(2{x^2} - 5x - 3 = 0\), ta có: \(a = 2;b =  - 5;c =  - 3\).

• Với phương trình \({x^2} - 7x + 4 = 0\), ta có: \(a = 1;b =  - 7;c = 4.\)

b) Giải phương trình \(2{x^2} - 5x - 3 = 0\), ta có: \(\Delta  = {\left( { - 5} \right)^2} - 4.2.\left( { - 3} \right) = 49 > 0\).

Do đó, phương trình có hai nghiệm phân biệt là

\({x_1} = \frac{{5 + \sqrt {49} }}{4} = \frac{{12}}{4} = 3\) và \({x_2} = \frac{{5 - \sqrt {49} }}{4} = \frac{{ - 2}}{4} =  - \frac{1}{2}\).

Vậy tập nghiệm của phương trình \(2{x^2} - 5x - 3 = 0\) là: \(\left\{ { - \frac{1}{2};3} \right\}.\)

Giải phương trình \({x^2} - 7x + 4 = 0\), ta có: \(\Delta  = {\left( { - 7} \right)^2} - 4.4 = 33 > 0\).

Do đó, phương trình có hai nghiệm phân biệt là

\({x_1} = \frac{{7 + \sqrt {33} }}{2}\) và \({x_2} = \frac{{7 - \sqrt {33} }}{2}\).

Vậy tập nghiệm của phương trình \({x^2} - 7x + 4 = 0\) là \(\left\{ {\frac{{7 + \sqrt {33} }}{2};\frac{{7 - \sqrt {33} }}{2}} \right\}\).

2. Gọi \(x\) (g/cm3) là khối lượng riêng của chất lỏng I \(\left( {x > 0,2} \right).\)

Khi đó, khối lượng riêng của chất lỏng II là \(x - 0,2\) (g/cm3).

Thể tích của chất lỏng I là: \(\frac{8}{x}\) (cm3).

Thể tích của chất lỏng II là: \(\frac{6}{{x - 0,2}}\) (cm3).

Khối lượng hỗn hợp sau khi trộn là: \(8 + 6 = 14\) (g).

Thể tích của hỗn hợp sau khi trộn là: \(\frac{{14}}{{0,7}} = 20\) (cm3).

Ta có phương trình: \(\frac{8}{x} + \frac{6}{{x - 0,2}} = 20\).

Giải phương trình:

\(\frac{8}{x} + \frac{6}{{x - 0,2}} = 20\)

\(\frac{{8\left( {x - 0,2} \right)}}{{x\left( {x - 0,2} \right)}} + \frac{{6x}}{{x\left( {x - 0,2} \right)}} = \frac{{20x\left( {x - 0,2} \right)}}{{x\left( {x - 0,2} \right)}}\)

\(8\left( {x - 0,2} \right) + 6x = 20x\left( {x - 0,2} \right)\)

\(8x - 1,6 + 6x = 20{x^2} - 4x\)

\(20{x^2} - 18x + 1,6 = 0\)

\(50{x^2} - 45x + 4 = 0\)

Phương trình có \(\Delta  = {\left( { - 45} \right)^2} - 4 \cdot 50 \cdot 4 = 1\,\,225 > 0\) và \(\sqrt \Delta   = 35.\)

Phương trình có hai nghiệm phân biệt là:

\({x_1} = \frac{{45 + 35}}{{2 \cdot 50}} = 0,8\) (thỏa mãn); \({x_2} = \frac{{45 - 35}}{{2 \cdot 50}} = 0,1\) (không thỏa mãn).

Vậy khối lượng riêng của chất lỏng I là \(0,8\) g/cm3; khối lượng riêng của chất lỏng I là \(0,8 - 0,2 = 0,6\) (g/cm3).

Câu 2

Cho phương trình \({x^2} - 2mx - 2{m^2} - 1 = 0\) (\(m\) là tham số).

a) Chứng minh phương trình luôn có nghiệm.

b) Giải phương trình khi \(m = 2.\)

c) Tìm \(m\) để phương trình đã cho có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} =  - 3.\)

Lời giải

a) Phương trình \({x^2} - 2mx - 2{m^2} - 1 = 0\) có \(\Delta ' = {\left( { - m} \right)^2} + 2{m^2} + 1 = 3{m^2} + 1 > 0\) với mọi \(m\).

Do đó, phương trình luôn có nghiệm.

b) Với \(m = 2,\) ta có: \({x^2} - 4x - 9 = 0\).

Ta có biệt thức \(\Delta ' = {\left( { - 2} \right)^2} - \left( { - 9} \right) = 13 > 0\).

Do đó, phương trình có hai nghiệm phân biệt.

Đó là \({x_1} = 2 - \sqrt {13} \) và \({x_2} = 2 + \sqrt {13} \).

Vậy tập nghiệm của phương trình là \(\left\{ {2 - \sqrt {13} ;2 + \sqrt {13} } \right\}\).

c) Xét phương trình \({x^2} - 2mx - 2{m^2} - 1 = 0\) có:

\(\Delta ' = {\left( { - m} \right)^2} - 1 \cdot \left( { - 2{m^2} - 1} \right) = {m^2} + 2{m^2} + 1 = 3{m^2} + 1.\)

Với mọi \(m \in \mathbb{R}\) ta thấy \(3{m^2} + 1 > 0\) nên \(\Delta ' > 0.\)

Do đó, phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi giá trị của \(m.\)

Theo định lí Viète, ta có: \({x_1} + {x_2} = 2m;\,\,{x_1}{x_x} =  - 2{m^2} - 1.\)

Ta có: \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} =  - 3\)

\(\frac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} =  - 3\)

\(\frac{{x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2}}}{{{x_1}{x_2}}} =  - 3\)

\(\frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}} =  - 3\)

\(\frac{{{{\left( {2m} \right)}^2} - 2\left( { - 2{m^2} - 1} \right)}}{{ - 2{m^2} - 1}} =  - 3\)

\(4{m^2} + 4{m^2} + 2 = 6{m^2} + 3\)

\(2{m^2} = 1\)

\({m^2} = \frac{1}{2}\)

\(m = \frac{{\sqrt 2 }}{2}\) (thỏa mãn) hoặc \(m =  - \frac{{\sqrt 2 }}{2}\) (thỏa mãn).

Vậy \(m \in \left\{ {\frac{{\sqrt 2 }}{2};\,\, - \frac{{\sqrt 2 }}{2}} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP