1. Xét các phương trình sau:
\(2{x^2} - 5x - 3 = 0;\)
\({x^2} - 7x + 4 = 0;\)
\(0{x^2} - 3x + 4 = 0;\)
\( - {x^2} + 2y + 4 = 0.\)
a) Trong các phương trình trên, phương trình nào là phương trình bậc hai một ẩn và chỉ rõ các hệ số \(a;b;c.\)
b) Giải các phương trình bậc hai vừa tìm được.
2. Giải bài toán sau bằng cách lập phương trình:
Bạn An chia đoạn thẳng \(AB\) dài 10 cm thành hai đoạn sao cho tỉ số giữa đoạn lớn với đoạn \(AB\) bằng tỉ số giữa đoạn nhỏ với đoạn lớn. Hãy tìm tỉ số ấy.
1. Xét các phương trình sau:
\(2{x^2} - 5x - 3 = 0;\)
\({x^2} - 7x + 4 = 0;\)
\(0{x^2} - 3x + 4 = 0;\)
\( - {x^2} + 2y + 4 = 0.\)
a) Trong các phương trình trên, phương trình nào là phương trình bậc hai một ẩn và chỉ rõ các hệ số \(a;b;c.\)
b) Giải các phương trình bậc hai vừa tìm được.
2. Giải bài toán sau bằng cách lập phương trình:
Bạn An chia đoạn thẳng \(AB\) dài 10 cm thành hai đoạn sao cho tỉ số giữa đoạn lớn với đoạn \(AB\) bằng tỉ số giữa đoạn nhỏ với đoạn lớn. Hãy tìm tỉ số ấy.
Quảng cáo
Trả lời:
1. a) Xét các phương trình trên, ta có các phương trình bậc hai một ẩn là:
\(2{x^2} - 5x - 3 = 0\) và \({x^2} - 7x + 4 = 0.\)
• Với phương trình \(2{x^2} - 5x - 3 = 0\), ta có: \(a = 2;b = - 5;c = - 3\).
• Với phương trình \({x^2} - 7x + 4 = 0\), ta có: \(a = 1;b = - 7;c = 4.\)
b) Giải phương trình \(2{x^2} - 5x - 3 = 0\), ta có: \(\Delta = {\left( { - 5} \right)^2} - 4.2.\left( { - 3} \right) = 49 > 0\).
Do đó, phương trình có hai nghiệm phân biệt là
\({x_1} = \frac{{5 + \sqrt {49} }}{4} = \frac{{12}}{4} = 3\) và \({x_2} = \frac{{5 - \sqrt {49} }}{4} = \frac{{ - 2}}{4} = - \frac{1}{2}\).
Vậy tập nghiệm của phương trình \(2{x^2} - 5x - 3 = 0\) là: \(\left\{ { - \frac{1}{2};3} \right\}.\)
Giải phương trình \({x^2} - 7x + 4 = 0\), ta có: \(\Delta = {\left( { - 7} \right)^2} - 4.4 = 33 > 0\).
Do đó, phương trình có hai nghiệm phân biệt là
\({x_1} = \frac{{7 + \sqrt {33} }}{2}\) và \({x_2} = \frac{{7 - \sqrt {33} }}{2}\).
Vậy tập nghiệm của phương trình \({x^2} - 7x + 4 = 0\) là \(\left\{ {\frac{{7 + \sqrt {33} }}{2};\frac{{7 - \sqrt {33} }}{2}} \right\}\).
2. Giả sử điểm \(M\) chia đoạn thẳng \(AB\) thành hai đoạn thẳng thỏa mãn điều kiện bài toán, \(AM > MB.\)
Gọi độ dài của \(AM = x\) \(({\rm{cm}})\,\,\left( {0 < x < 10} \right)\) suy ra \(MB = 10 - x{\rm{\;(cm)}}{\rm{.}}\)
Theo đề bài, bạn An chia đoạn thẳng \(AB\) thành hai đoạn sao cho tỉ số giữa đoạn lớn với đoạn \(AB\) bằng tỉ số giữa đoạn nhỏ với đoạn lớn nên ta có \(\frac{{AM}}{{AB}} = \frac{{MB}}{{AM}}\) hay \(\frac{x}{{10}} = \frac{{10 - x}}{x}\).
Giải phương trình:
\(\frac{x}{{10}} = \frac{{10 - x}}{x}\)
\({x^2} = 10\left( {10 - x} \right)\)
\({x^2} = 100 - 10x\)
\({x^2} + 10x - 100 = 0\)
Giải phương trình trên ta được \({x_1} = - 5 - 5\sqrt 5 ;\)\({x_2} = - 5 + 5\sqrt 5 .\)
Ta thấy chỉ có giá trị \({x_2} = - 5 + 5\sqrt 5 \) thỏa mãn điều kiện.
Vậy \(AM = - 5 + 5\sqrt 5 {\rm{\;(cm)}}{\rm{,}}\) tỉ số cần tìm là \(\frac{{AM}}{{AB}} = \frac{{ - 5 + 5\sqrt 5 }}{{10}} = \frac{{\sqrt 5 - 1}}{2}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Với \(m = 2,\) ta có: \(\left( {2.2 - 3} \right){x^2} - 2\left( {2 - 2} \right)x - 1 = 0\) hay \({x^2} - 1 = 0\) nên \({x^2} = 1\).
Suy ra \(x = 1\) hoặc \(x = - 1\).
Vậy với \(m = 2,\) phương trình có nghiệm là \(\left\{ { - 1;1} \right\}\).
b) Xét phương trình \(\left( {2m - 3} \right){x^2} - 2\left( {m - 2} \right)x - 1 = 0\), ta có:
• Với \(2m - 3 = 0\) thì \(m = \frac{3}{2}\) thì ta được: \(x - 1 = 0\), suy ra \(x = 1\). (1)
• Với \(2m - 3 \ne 0\) thì \(m \ne \frac{3}{2}\) ta được phương trình bậc hai \(\left( {2m - 3} \right){x^2} - 2\left( {m - 2} \right)x - 1 = 0\)
Có \(\Delta ' = {\left[ { - \left( {m - 2} \right)} \right]^2} + \left( {2m - 3} \right) = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0\), với mọi \(m \in \mathbb{R}\). (2)
Từ (1) và (2), suy ra phương trình luôn có nghiệm với mọi \(m \in \mathbb{R}\).
c) Để phương trình có hai nghiệm phân biệt thì \(\Delta ' > 0\) và \(2m - 3 \ne 0\), suy ra \({\left( {m - 1} \right)^2} > 0\) và \(m \ne \frac{3}{2}\), do đó \(m \ne 1\) và \(m \ne \frac{3}{2}\).
Theo hệ thức Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{2\left( {m - 2} \right)}}{{2m - 3}}\\{x_1}{x_2} = \frac{{ - 1}}{{\left( {2m - 3} \right)}}\end{array} \right.\).
Mà theo đề, ta có: \(2{x_1} + 3{x_2} = 5\) suy ra \({x_1} = \frac{{5 - 3{x_2}}}{2}\).
Thay \({x_1} = \frac{{5 - 3{x_2}}}{2}\) vào \({x_1} + {x_2} = \frac{{2\left( {m - 2} \right)}}{{2m - 3}}\), ta được: \(\frac{{5 - 3{x_2}}}{2} + {x_2} = \frac{{2\left( {m - 2} \right)}}{{2m - 3}}\).
Suy ra \(5 - {x_2} = \frac{{4\left( {m - 2} \right)}}{{2m - 3}}\) nên \({x_2} = 5 - \frac{{4\left( {m - 2} \right)}}{{2m - 3}} = \frac{{6m - 7}}{{2m - 3}}\).
Do đó, \({x_1} = \frac{{5 - 3{x_2}}}{2} = \frac{5}{2} - \frac{3}{2}{x_2} = \frac{5}{2} - \frac{3}{2}.\frac{{6m - 7}}{{2m - 3}} = \frac{{ - 8m + 6}}{{2\left( {2m - 3} \right)}} = \frac{{ - 4m + 3}}{{2m - 3}}\).
Mà \({x_1}{x_2} = \frac{{ - 1}}{{\left( {2m - 3} \right)}}\) nên \(\frac{{6m - 7}}{{\left( {2m - 3} \right)}}.\frac{{\left( { - 4m + 3} \right)}}{{\left( {2m - 3} \right)}} = \frac{{ - 1}}{{2m - 3}}\).
Suy ra \(\left( {6m - 7} \right).\left( { - 4m + 3} \right) = - \left( {2m - 3} \right)\)
Do đó, \(24{m^2} - 46m + 21 = 2m - 3\) hay \(24{m^2} - 48m + 24 = 0\)
Suy ra \({m^2} - 2m + 1 = 0\) hay \({\left( {m - 1} \right)^2} = 0\).
Suy ra \(m = 1\) (loại).
Vậy không có giá trị của \(m\) thỏa mãn yêu cầu bài toán.
Lời giải
|
a) Vì \(AI,\,\,CL\) là đường cao của tam giác \(ABC\) nên \(AI \bot BC\) và \(CL \bot AB.\) Do đó \(\widehat {AIB} = \widehat {BLC} = 90^\circ \) hay \(\widehat {HIB} = \widehat {BLH} = 90^\circ \). Suy ra hai điểm \(I,\,\,L\) cùng nằm trên đường tròn đường kính \(BH.\) Vậy bốn điểm \(B,\,\,I,\,\,L,\,\,H\) cùng nằm trên đường tròn đường kính \(BH\) hay tứ giác \(BIHL\) nội tiếp đường tròn đường kính \(BH.\) b) Chứng minh tương tự câu 1, ta có tứ giác \(CIHK\) nội tiếp đường tròn đường kính \(CH.\) Suy ra \(\widehat {IKC} = \widehat {IHC}\) (hai góc nội tiếp cùng chắn cung \(IC)\) |
![]() |
Chứng minh tương tự, ta có tứ giác \(AKHL\) nội tiếp đường tròn đường kính \(AH\) nên \(\widehat {AKL} = \widehat {AHL}\) (hai góc nội tiếp cùng chắn cung \(AL).\)
Lại có \(\widehat {IHC} = \widehat {AHL}\) (đối đỉnh)
Do đó \(\widehat {AKL} = \widehat {IKC}.\)
Ta có \(\widehat {AKL} + \widehat {LKB} = 90^\circ \) và \(\widehat {IKC} + \widehat {IKB} = 90^\circ \)
Mà \(\widehat {AKL} = \widehat {IKC}\) nên \(\widehat {LKB} = \widehat {IKB}\) hay \(KB\) tức \(KH\) là tia phân giác của \(\widehat {IKL}.\)
Chứng minh tương tự, ta có \(IH\) là tia phân giác của \(\widehat {LIK}.\)
Xét tam giác \(IKL\) có \(KH,\,\,IH\) là hai đường phân giác của tam giác cắt nhau tại \(H\) nên \(H\) là tâm đường tròn nội tiếp tam giác \(IKL.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
