Câu hỏi:

01/07/2025 24

Cho tam giác \(ABC\) nhọn. Ba đường cao \(AI,\,\,BK,\,\,CL\) cắt nhau tại \(H.\) Chứng minh:

a) Tứ giác \(BIHL\) là tứ giác nội tiếp.

b) \(H\) là tâm đường tròn nội tiếp tam giác \(IKL.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

     a) Vì \(AI,\,\,CL\) là đường cao của tam giác \(ABC\) nên \(AI \bot BC\) và \(CL \bot AB.\) Do đó \(\widehat {AIB} = \widehat {BLC} = 90^\circ \) hay \(\widehat {HIB} = \widehat {BLH} = 90^\circ \).

Suy ra hai điểm \(I,\,\,L\) cùng nằm trên đường tròn đường kính \(BH.\)

Vậy bốn điểm \(B,\,\,I,\,\,L,\,\,H\) cùng nằm trên đường tròn đường kính \(BH\) hay tứ giác \(BIHL\) nội tiếp đường tròn đường kính \(BH.\)

     b) Chứng minh tương tự câu 1, ta có tứ giác \(CIHK\) nội tiếp đường tròn đường kính \(CH.\)

Suy ra \(\widehat {IKC} = \widehat {IHC}\) (hai góc nội tiếp cùng chắn cung \(IC)\)

Cho tam giác \(ABC\) nhọn. Ba đường cao \(AI,\,\,BK,\,\,CL\) cắt nhau tại \(H.\) Chứng minh:  a) Tứ giác \(BIHL\) là tứ giác nội tiếp.  b) \(H\) là tâm đường tròn nội tiếp tam giác \(IKL.\) (ảnh 1)

Chứng minh tương tự, ta có tứ giác \(AKHL\) nội tiếp đường tròn đường kính \(AH\) nên \(\widehat {AKL} = \widehat {AHL}\) (hai góc nội tiếp cùng chắn cung \(AL).\)

Lại có \(\widehat {IHC} = \widehat {AHL}\) (đối đỉnh)

Do đó \(\widehat {AKL} = \widehat {IKC}.\)

Ta có \(\widehat {AKL} + \widehat {LKB} = 90^\circ \) và \(\widehat {IKC} + \widehat {IKB} = 90^\circ \)

Mà \(\widehat {AKL} = \widehat {IKC}\) nên \(\widehat {LKB} = \widehat {IKB}\) hay \(KB\) tức \(KH\) là tia phân giác của \(\widehat {IKL}.\)

Chứng minh tương tự, ta có \(IH\) là tia phân giác của \(\widehat {LIK}.\)

Xét tam giác \(IKL\) có \(KH,\,\,IH\) là hai đường phân giác của tam giác cắt nhau tại \(H\) nên \(H\) là tâm đường tròn nội tiếp tam giác \(IKL.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

        1. Vì tứ giác \(ABCD\) nội tiếp nên \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (tổng hai góc đối của tứ giác nội tiếp)

Suy ra \(\widehat {ADC} = 180^\circ  - \widehat {ABC} = 180^\circ  - 106^\circ  = 74^\circ .\)

Khi đó,  (số đo cung gấp hai lần số đo góc nội tiếp chắn cung đó)

	1. Cho hình lục giác đều \(ABCDEG\) (các đỉnh của lục giác theo thứ tự cùng chiều kim đồng hồ) có tâm \(O.\) Phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(E\) có góc quay là bao nhiêu độ? 	2. Cho tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right),\) biết \(\widehat {ABC} = 106^\circ .\) Tính số đo cung \(ADC\). (ảnh 1)

     2. Vì \(ABCDEG\) là lục giác đều nên \(AB = BC = CD = DE = EG = GA\) và \(OA = OB = OC = OD = OE = OG\).

Xét \(\Delta OAB\) và \(\Delta OBC\) có:

\(OA = OB,\,\,OB = OC,\,\,AB = BC\)

Do đó \(\Delta OAB = \Delta OBC\) (c.c.c)

Suy ra \(\widehat {AOB} = \widehat {BOC}\) (hai góc tương ứng).

Tương tự, ta sẽ chứng minh được

\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOA}.\)

Lại có:

\(\widehat {AOB} + \widehat {BOC} + \widehat {COD} + \widehat {DOE} + \widehat {EOG} + \widehat {GOA} = 360^\circ \)

	1. Cho hình lục giác đều \(ABCDEG\) (các đỉnh của lục giác theo thứ tự cùng chiều kim đồng hồ) có tâm \(O.\) Phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(E\) có góc quay là bao nhiêu độ? 	2. Cho tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right),\) biết \(\widehat {ABC} = 106^\circ .\) Tính số đo cung \(ADC\). (ảnh 2)

Suy ra \(6\widehat {GOA} = 360^\circ \) nên \[\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOA} = 60^\circ .\]

Do đó, \(\widehat {AOE} = \widehat {GOA} + \widehat {EOG} = 60^\circ  + 60^\circ  = 120^\circ .\)

Lại có \(OA = OE.\) Như vậy, phép quay ngược chiều \(120^\circ \) tâm \(O\) biến điểm \(A\) thành điểm \(E.\)

Lời giải

     a) Thay \(x =  - 2,y = 8\) vào \(\left( P \right)\), ta được: \(8 = a.{\left( { - 2} \right)^2}\) hay \(4a = 8\) nên \(a = 2.\)

Vậy \(a = 2\) thì ta được hàm số \(\left( P \right):y = 2{x^2}\) đi qua điểm \(A\left( { - 2;8} \right).\)

     b) Ta có bảng giá trị của hàm số \(\left( P \right):y = 2{x^2}\) như sau:

\(x\)

\( - 2\)

\( - 1\)

\(0\)

\(1\)

\(2\)

\(y\)

\(8\)

\(2\)

\(0\)

\(2\)

\(8\)

Do đó, đồ thị hàm số \(\left( P \right):y = 2{x^2}\) đi qua các điểm có tọa độ \(\left( { - 2;8} \right);\left( { - 1;2} \right);\left( {0;0} \right);\left( {1;2} \right);\)\(\left( {2;8} \right)\).

Ta có đồ thị hàm số như sau:

Cho hàm số \(\left( P \right):y = a{x^2}{\rm{ }}\left( {a \ne 0} \right)\). 	a) Tìm \(a\) biết đồ thị của hàm số đi qua điểm \(A\left( { - 2;8} \right).\) 	b) Vẽ đồ thị hàm số với hệ số với hệ số \(a\) vừa tìm được. 	c) Tìm các điểm thuộc đồ thị hàm số trên có tung độ \(y = 2.\) 	d) Tìm \(a\) để đồ thị \(\left( P \right)\) cắt đường thẳng \(\left( d \right):y = x + 6\) tại điểm có hoành độ bằng \(\frac{6}{5}.\)  (ảnh 1)

     c) Ta có: \(\left( P \right):y = 2{x^2}\), thay \(y = 2,\) ta được: \(2{x^2} = 2\), suy ra \({x^2} = 1\) nên \(x = 1\) hoặc \(x =  - 1.\)

Do đó, các điểm thuộc đồ thị hàm số \(\left( P \right):y = 2{x^2}\) có tung độ \(y = 2\) là \(\left( {1;2} \right)\) và \(\left( { - 1;2} \right)\).

     d) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\), ta có:

\(a{x^2} = x + 6\) hay \(a{x^2} - x - 6 = 0\) (1)

Thay \(x = \frac{6}{5}\) vào phương trình (1), ta có: \(\frac{{36}}{{25}}a - \frac{6}{5} - 6 = 0\) hay \(\frac{{36}}{{25}}a - \frac{{36}}{5} = 0\) nên \(\frac{{36}}{{25}}a = \frac{{36}}{5}.\)

Do đó, \(a = 5\) (thỏa mãn).

Vậy \(\left( P \right):y = 5{x^2}\).