Câu hỏi:

01/07/2025 18

Cho phương trình \(\left( {2m - 3} \right){x^2} - 2\left( {m - 2} \right)x - 1 = 0\) với \(m\) là tham số.

     a) Giải phương trình với  \(m = 2.\)

     b) Chứng minh rằng với mọi \(m \in \mathbb{R}\), phương trình luôn có nghiệm.

     c) Tìm giá trị của \(m\) để phương trình có hai nghiệm phân biệt thỏa mãn \(2{x_1} + 3{x_2} = 5\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

     a) Với \(m = 2,\) ta có: \(\left( {2.2 - 3} \right){x^2} - 2\left( {2 - 2} \right)x - 1 = 0\) hay \({x^2} - 1 = 0\) nên \({x^2} = 1\).

     Suy ra \(x = 1\) hoặc \(x =  - 1\).

     Vậy với \(m = 2,\) phương trình có nghiệm là \(\left\{ { - 1;1} \right\}\).

     b) Xét phương trình \(\left( {2m - 3} \right){x^2} - 2\left( {m - 2} \right)x - 1 = 0\), ta có:

     • Với \(2m - 3 = 0\) thì \(m = \frac{3}{2}\) thì ta được: \(x - 1 = 0\), suy ra \(x = 1\). (1)

     • Với \(2m - 3 \ne 0\) thì \(m \ne \frac{3}{2}\) ta được phương trình bậc hai \(\left( {2m - 3} \right){x^2} - 2\left( {m - 2} \right)x - 1 = 0\)

     Có \(\Delta ' = {\left[ { - \left( {m - 2} \right)} \right]^2} + \left( {2m - 3} \right) = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0\), với mọi \(m \in \mathbb{R}\). (2)

     Từ (1) và (2), suy ra phương trình luôn có nghiệm với mọi \(m \in \mathbb{R}\).

c) Để phương trình có hai nghiệm phân biệt thì \(\Delta ' > 0\) và \(2m - 3 \ne 0\), suy ra \({\left( {m - 1} \right)^2} > 0\) và \(m \ne \frac{3}{2}\), do đó \(m \ne 1\) và \(m \ne \frac{3}{2}\).

     Theo hệ thức Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{2\left( {m - 2} \right)}}{{2m - 3}}\\{x_1}{x_2} = \frac{{ - 1}}{{\left( {2m - 3} \right)}}\end{array} \right.\).

     Mà theo đề, ta có: \(2{x_1} + 3{x_2} = 5\) suy ra \({x_1} = \frac{{5 - 3{x_2}}}{2}\).

     Thay \({x_1} = \frac{{5 - 3{x_2}}}{2}\) vào \({x_1} + {x_2} = \frac{{2\left( {m - 2} \right)}}{{2m - 3}}\), ta được: \(\frac{{5 - 3{x_2}}}{2} + {x_2} = \frac{{2\left( {m - 2} \right)}}{{2m - 3}}\).

     Suy ra \(5 - {x_2} = \frac{{4\left( {m - 2} \right)}}{{2m - 3}}\) nên \({x_2} = 5 - \frac{{4\left( {m - 2} \right)}}{{2m - 3}} = \frac{{6m - 7}}{{2m - 3}}\).

     Do đó, \({x_1} = \frac{{5 - 3{x_2}}}{2} = \frac{5}{2} - \frac{3}{2}{x_2} = \frac{5}{2} - \frac{3}{2}.\frac{{6m - 7}}{{2m - 3}} = \frac{{ - 8m + 6}}{{2\left( {2m - 3} \right)}} = \frac{{ - 4m + 3}}{{2m - 3}}\).

Mà \({x_1}{x_2} = \frac{{ - 1}}{{\left( {2m - 3} \right)}}\) nên \(\frac{{6m - 7}}{{\left( {2m - 3} \right)}}.\frac{{\left( { - 4m + 3} \right)}}{{\left( {2m - 3} \right)}} = \frac{{ - 1}}{{2m - 3}}\).

Suy ra \(\left( {6m - 7} \right).\left( { - 4m + 3} \right) =  - \left( {2m - 3} \right)\)

Do đó, \(24{m^2} - 46m + 21 = 2m - 3\) hay \(24{m^2} - 48m + 24 = 0\)

Suy ra \({m^2} - 2m + 1 = 0\) hay \({\left( {m - 1} \right)^2} = 0\).

Suy ra \(m = 1\) (loại).

Vậy không có giá trị của \(m\) thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

        1. Vì tứ giác \(ABCD\) nội tiếp nên \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (tổng hai góc đối của tứ giác nội tiếp)

Suy ra \(\widehat {ADC} = 180^\circ  - \widehat {ABC} = 180^\circ  - 106^\circ  = 74^\circ .\)

Khi đó,  (số đo cung gấp hai lần số đo góc nội tiếp chắn cung đó)

	1. Cho hình lục giác đều \(ABCDEG\) (các đỉnh của lục giác theo thứ tự cùng chiều kim đồng hồ) có tâm \(O.\) Phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(E\) có góc quay là bao nhiêu độ? 	2. Cho tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right),\) biết \(\widehat {ABC} = 106^\circ .\) Tính số đo cung \(ADC\). (ảnh 1)

     2. Vì \(ABCDEG\) là lục giác đều nên \(AB = BC = CD = DE = EG = GA\) và \(OA = OB = OC = OD = OE = OG\).

Xét \(\Delta OAB\) và \(\Delta OBC\) có:

\(OA = OB,\,\,OB = OC,\,\,AB = BC\)

Do đó \(\Delta OAB = \Delta OBC\) (c.c.c)

Suy ra \(\widehat {AOB} = \widehat {BOC}\) (hai góc tương ứng).

Tương tự, ta sẽ chứng minh được

\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOA}.\)

Lại có:

\(\widehat {AOB} + \widehat {BOC} + \widehat {COD} + \widehat {DOE} + \widehat {EOG} + \widehat {GOA} = 360^\circ \)

	1. Cho hình lục giác đều \(ABCDEG\) (các đỉnh của lục giác theo thứ tự cùng chiều kim đồng hồ) có tâm \(O.\) Phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(E\) có góc quay là bao nhiêu độ? 	2. Cho tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right),\) biết \(\widehat {ABC} = 106^\circ .\) Tính số đo cung \(ADC\). (ảnh 2)

Suy ra \(6\widehat {GOA} = 360^\circ \) nên \[\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOA} = 60^\circ .\]

Do đó, \(\widehat {AOE} = \widehat {GOA} + \widehat {EOG} = 60^\circ  + 60^\circ  = 120^\circ .\)

Lại có \(OA = OE.\) Như vậy, phép quay ngược chiều \(120^\circ \) tâm \(O\) biến điểm \(A\) thành điểm \(E.\)

Lời giải

     1. a) Xét các phương trình trên, ta có các phương trình bậc hai một ẩn là:

\(2{x^2} - 5x - 3 = 0\) và \({x^2} - 7x + 4 = 0.\)

• Với phương trình \(2{x^2} - 5x - 3 = 0\), ta có: \(a = 2;b =  - 5;c =  - 3\).

• Với phương trình \({x^2} - 7x + 4 = 0\), ta có: \(a = 1;b =  - 7;c = 4.\)

b) Giải phương trình \(2{x^2} - 5x - 3 = 0\), ta có: \(\Delta  = {\left( { - 5} \right)^2} - 4.2.\left( { - 3} \right) = 49 > 0\).

Do đó, phương trình có hai nghiệm phân biệt là

\({x_1} = \frac{{5 + \sqrt {49} }}{4} = \frac{{12}}{4} = 3\) và \({x_2} = \frac{{5 - \sqrt {49} }}{4} = \frac{{ - 2}}{4} =  - \frac{1}{2}\).

Vậy tập nghiệm của phương trình \(2{x^2} - 5x - 3 = 0\) là: \(\left\{ { - \frac{1}{2};3} \right\}.\)

Giải phương trình \({x^2} - 7x + 4 = 0\), ta có: \(\Delta  = {\left( { - 7} \right)^2} - 4.4 = 33 > 0\).

Do đó, phương trình có hai nghiệm phân biệt là

\({x_1} = \frac{{7 + \sqrt {33} }}{2}\) và \({x_2} = \frac{{7 - \sqrt {33} }}{2}\).

Vậy tập nghiệm của phương trình \({x^2} - 7x + 4 = 0\) là \(\left\{ {\frac{{7 + \sqrt {33} }}{2};\frac{{7 - \sqrt {33} }}{2}} \right\}\).

     2. Giả sử điểm \(M\) chia đoạn thẳng \(AB\) thành hai đoạn thẳng thỏa mãn điều kiện bài toán, \(AM > MB.\)

Gọi độ dài của \(AM = x\) \(({\rm{cm}})\,\,\left( {0 < x < 10} \right)\) suy ra \(MB = 10 - x{\rm{\;(cm)}}{\rm{.}}\)

Theo đề bài, bạn An chia đoạn thẳng \(AB\) thành hai đoạn sao cho tỉ số giữa đoạn lớn với đoạn \(AB\) bằng tỉ số giữa đoạn nhỏ với đoạn lớn nên ta có \(\frac{{AM}}{{AB}} = \frac{{MB}}{{AM}}\) hay \(\frac{x}{{10}} = \frac{{10 - x}}{x}\).

Giải phương trình:

\(\frac{x}{{10}} = \frac{{10 - x}}{x}\)

\({x^2} = 10\left( {10 - x} \right)\)

\({x^2} = 100 - 10x\)

\({x^2} + 10x - 100 = 0\)

Giải phương trình trên ta được \({x_1} =  - 5 - 5\sqrt 5 ;\)\({x_2} =  - 5 + 5\sqrt 5 .\)

Ta thấy chỉ có giá trị \({x_2} =  - 5 + 5\sqrt 5 \) thỏa mãn điều kiện.

Vậy \(AM =  - 5 + 5\sqrt 5 {\rm{\;(cm)}}{\rm{,}}\) tỉ số cần tìm là \(\frac{{AM}}{{AB}} = \frac{{ - 5 + 5\sqrt 5 }}{{10}} = \frac{{\sqrt 5  - 1}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP