Câu hỏi:

03/07/2025 40 Lưu

(2,0 điểm)

1. Giải các phương trình sau:

a) \(\left( {6x - 7} \right)\left( {3x + 4} \right) = \left( {7 - 6x} \right)\left( {x - 1} \right)\).

b) \(\frac{3}{{x + 1}} - \frac{2}{{x - 2}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {2 - x} \right)}}\).

2. Giải các bất phương trình sau:

a) \(\frac{{6 - 4x}}{{ - 5}} < 1\).

b) \[{\left( {x + 2} \right)^2} - \left( {x + 5} \right)\left( {x - 5} \right) > 2\left( {2x - 5} \right)\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

1. a) \(\left( {6x - 7} \right)\left( {3x + 4} \right) = \left( {7 - 6x} \right)\left( {x - 1} \right)\)

\(\left( {6x - 7} \right)\left( {3x + 4} \right) - \left( {7 - 6x} \right)\left( {x - 1} \right) = 0\)

\(\left( {6x - 7} \right)\left( {3x + 4} \right) + \left( {6x - 7} \right)\left( {x - 1} \right) = 0\)

\(\left( {6x - 7} \right)\left[ {\left( {3x + 4} \right) + \left( {x - 1} \right)} \right] = 0\)

\(\left( {6x - 7} \right)\left( {4x + 3} \right) = 0\)

\(6x - 7 = 0\) hoặc \(4x + 3 = 0\)

\(x = \frac{7}{6}\) hoặc \(x = \frac{{ - 3}}{4}\).

Vậy phương trình đã cho có hai nghiệm là \(x = \frac{7}{6};\) \(x = \frac{{ - 3}}{4}\).

1. b) Điều kiện xác định: \(x \ne - 1\) và \(x \ne 2\).

\(\frac{3}{{x + 1}} - \frac{2}{{x - 2}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {2 - x} \right)}}\)

\(\frac{{3\left( {x - 2} \right) - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{{2 - 4x}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

\(3\left( {x - 2} \right) - 2\left( {x + 1} \right) = 2 - 4x\)

\(3x - 6 - 2x - 2 = 2 - 4x\)

\[x - 8 = 2 - 4x\]

\[5x = 10\]

\[x = 2\] (không thỏa mãn).

Vậy phương trình đã cho vô nghiệm.

2. a) \(\frac{{6 - 4x}}{{ - 5}} < 1\)

\(\frac{{6 - 4x}}{{ - 5}} \cdot \left( { - 5} \right) > 1 \cdot \left( { - 5} \right)\)

\(6 - 4x > - 5\)

\( - 4x > - 11\)

\[x < \frac{{11}}{4}\].

</></>

b) \[{\left( {x + 2} \right)^2} - \left( {x + 5} \right)\left( {x - 5} \right) > 2\left( {2x - 5} \right)\]

B. \[{x^2} + 4x + 4 - \left( {{x^2} - 25} \right) > 4x - 10\]

C. \[{x^2} + 4x + 4 - {x^2} + 25 - 4x > - 10\]

D. \[0x > - 39\]

Vậy nghiệm của bất phương trình đã cho là \[x \in \mathbb{R}\].

Vậy bất phương trình đã cho có nghiệm là \[x < \frac{{11}}{4}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. Xét \(\Delta ABD\) vuông tại \(B\), ta có:

\(\tan \widehat {BAD} = \frac{{BD}}{{AB}} = \frac{3}{5},\) từ đó ta tìm được \(\alpha = \widehat {BAD} \approx 31^\circ \).

Suy ra \(\widehat {BAC} = \widehat {BAD} + \widehat {DAC} \approx 31^\circ + 37^\circ = 68^\circ \).

Xét \(\Delta ABC\) vuông tại \(B\), ta có:

⦁ \[BC = AB \cdot \tan \widehat {BAC} \approx 5 \cdot \tan 68^\circ \approx 12,38,\] suy ra \(x = CD = BC - BD \approx 12,38 - 3 = 9,38;\)

⦁ \(AB = AC \cdot \cos \widehat {BAC}\) suy ra \(y = AC = \frac{{AB}}{{\cos \widehat {BAC}}} \approx \frac{5}{{\cos 68^\circ }} \approx 13,35\).

Vậy \(\alpha \approx 31^\circ ;\,\,x \approx 9,38\) và \(y \approx 13,35.\)

2. Quãng đường chiếc thuyền đi được giữa hai lần quan sát là \(CD.\)

Xét \(\Delta BCA\) vuông tại \(A\) ta có: \(AC = AB \cdot \cot \widehat {BCA} = 75 \cdot \cot 45^\circ = 75{\rm{\;(m)}}{\rm{.}}\)

Xét \(\Delta DBA\) vuông tại \(A\) ta có: \(AD = AB \cdot \cot \widehat {BDA} = 75 \cdot \cot 30^\circ = 75\sqrt 3 {\rm{\;(m)}}{\rm{.}}\)

Quãng đường chiếc thuyền đi được giữa hai lần quan sát là:

\(CD = AD - AC = 75\sqrt 3 - 75 \approx 55{\rm{\;(m)}}{\rm{.}}\).

Vậy chiếc thuyền đi được khoảng 55 mét giữa hai lần quan sát.

Lời giải

Hướng dẫn giải

1. Vì số nguyên tử của \({\rm{Fe,}}\,\,{\rm{O}}\) và \({\rm{H}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\3x = 3 + y\\3x = 2y\end{array} \right.\)

Từ hai phương trình \(3x = 3 + y\) và \(3x = 2y\) ta có phương trình \(3 + y = 2y,\) suy ra \(y = 3.\)

Vậy \(x = 2\) và \(y = 3.\) Khi đó ta có phương trình phản ứng hóa học sau khi được cân bằng như sau:

\[2{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + 3{{\rm{H}}_2}{\rm{O}}.\]

2. Gọi \(x\) (đồng) và \(y\) (đồng) lần lượt là giá vé cáp treo khứ hồi và giá vé 1 lượt \(\left( {x > 0,\,\,y > 0} \right).\)

Do giá vé 1 lượt rẻ hơn giá vé khứ hồi là \[70{\rm{ }}000\] đồng nên ta có phương trình:

\(x - y = 70\,\,000.\,\,\,\left( 1 \right)\)

Do trong đoàn \(40\) người chỉ có \(5\) người mua vé cáp treo \(1\) lượt cho lượt xuống nên đã có \(40 - 5 = 35\) người mua vé cáp treo khứ hồi.

Khi đó, số tiền cần trả để mua \(35\) vé cáp treo khứ hồi và \(5\) vé cáp treo 1 lượt là: \(35x + 5y\) (đồng).

Theo bài, cả đoàn khách du lịch này đã chi ra \[8{\rm{ }}450{\rm{ }}000\] đồng để mua vé nên ta có phương trình:

\(35x + 5y = 8{\rm{ }}450{\rm{ }}000.\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = 70\,\,000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\35x + 5y = 8{\rm{ }}450{\rm{ }}000\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân hai vế của phương trình \(\left( 1 \right)\) với \(5,\) ta được hệ phương trình mới là: \(\left\{ \begin{array}{l}5x - 5y = 350\,\,000\\35x + 5y = 8{\rm{ }}450{\rm{ }}000.\end{array} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được:

\(40x = 8\,\,800\,\,000,\) suy ra \(x = 220\,\,000\) (thỏa mãn).

Thay \(x = 220\,\,000\) vào phương trình \(\left( 1 \right),\) ta được:

\(220\,\,000 - y = 70\,\,000,\) suy ra \(y = 150\,\,000\) (thỏa mãn).

Do đó hệ phương trình trên có nghiệm là \(\left( {x;\,\,y} \right) = \left( {220\,\,000;\,\,150\,\,000} \right).\)

Vậy giá vé cáp treo khứ hồi và giá vé cáp treo 1 lượt lần lượt là \(200\,\,000\) đồng và \(150\,\,000\) đồng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP