Câu hỏi:
05/07/2025 24Cho tam giác \(ABC\) cân tại \(A\) có \(AB = 2a\) và \(\widehat {B\,} = \alpha \). Tính diện tích tam giác \(ABC\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp số: \(S = 4{a^2}\sin \alpha \cdot \cos \alpha .\)
Kẻ đường cao \(AM\) của tam giác \(ABC.\)
⦁ Xét \(\Delta ABM\) vuông tại \(M\), ta có: \(BM = AB \cdot \cos B = 2a \cdot \cos \alpha \) và \(AM = AB \cdot \sin B = 2a \cdot \sin \alpha .\) ⦁ Xét \(\Delta ABC\) cân tại \(A\) có \(AM\) là đường đường cao nên đồng thời là trung tuyến của tam giác hay \(M\) là trung điểm của \(BC\). Suy ra \(BC = 2BM = 2 \cdot 2a \cdot \cos \alpha = 4a \cdot \cos \alpha \). Diện tích tam giác \(ABC\) là: \(S = \frac{1}{2}AM \cdot BC = \frac{1}{2} \cdot \left( {2a \cdot \sin \alpha } \right) \cdot \left( {4a \cdot \cos \alpha } \right) = 4{a^2}\sin \alpha \cdot \cos \alpha \). |
|
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).
Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).
Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:
\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)
Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)
Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:
\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).
Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:
\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).
Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)
Lời giải
Đáp án đúng là: C
Xét \(\Delta ABC\) vuông tại \(A\), theo định lí Pythagore, ta có:
\(B{C^2} = A{B^2} + A{C^2}\)
Suy ra \(A{C^2} = B{C^2} - A{B^2} = {15^2} - {5^2} = 200\)
Do đó \(AC = \sqrt {200} = \sqrt {100 \cdot 2} = \sqrt {{{10}^2} \cdot {{\left( {\sqrt 2 } \right)}^2}} = \sqrt {{{\left( {10\sqrt 2 } \right)}^2}} = 10\sqrt 2 \).
Khi đó \(\tan B = \frac{{AC}}{{AB}} = \frac{{10\sqrt 2 }}{5} = 2\sqrt 2 .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.