(1,5 điểm) Giải bài toán sau bằng cách lập hệ phương trình:
Người ta cho thêm \[1\] kg nước vào dung dịch \[A\] (của axit \(X)\) thì được dung dịch \[B\] có nồng độ axit là \[20\% \]. Sau đó lại cho thêm \[1\] kg axit \(X\) vào dung dịch \[B\] thì được dung dịch \[C\] có nồng độ axit là \[33\frac{1}{3}\% \]. Tính nồng độ axit của dung dịch \[A\].
Quảng cáo
Trả lời:

Hướng dẫn giải
Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).
Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).
Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:
\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)
Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)
Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:
\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).
Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:
\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).
Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\frac{1}{3}\).
B. \(\frac{{2\sqrt 2 }}{3}\).
C. \(2\sqrt 2 \).
D. \(\frac{{\sqrt 2 }}{4}\).
Lời giải
Đáp án đúng là: C
Xét \(\Delta ABC\) vuông tại \(A\), theo định lí Pythagore, ta có:
\(B{C^2} = A{B^2} + A{C^2}\)
Suy ra \(A{C^2} = B{C^2} - A{B^2} = {15^2} - {5^2} = 200\)
Do đó \(AC = \sqrt {200} = \sqrt {100 \cdot 2} = \sqrt {{{10}^2} \cdot {{\left( {\sqrt 2 } \right)}^2}} = \sqrt {{{\left( {10\sqrt 2 } \right)}^2}} = 10\sqrt 2 \).
Khi đó \(\tan B = \frac{{AC}}{{AB}} = \frac{{10\sqrt 2 }}{5} = 2\sqrt 2 .\)
Câu 2
A. \({d_1}\).
B. \({d_2}\).
C. \({d_3}\).
D. \({d_4}\).
Lời giải
Đáp án đúng là: D
Ta viết phương trình \(2x - y = 1\) về dạng \(y = 2x - 1\).
⦁ Xét cặp số \(\left( {1;\,\,0} \right),\) thay \(x = 1\) vào phương trình \(y = 2x - 1\), ta được: \(y = 2 \cdot 1 - 1 = 1 \ne 0.\)
Do đó, cặp số \(\left( {1;\,\,0} \right)\) không phải là nghiệm của phương trình \(2x - y = 1\), hay đường thẳng \(y = 2x - 1\) không đi qua điểm \(\left( {1;\,\,0} \right)\). Do đó đường thẳng \({d_1},\,\,{d_3}\) không thỏa mãn.
⦁ Xét cặp số \(\left( {0;\,\, - 1} \right),\) thay \(x = 0\) và \(y = - 1\) vào phương trình \(y = 2x - 1\), ta được:
\(y = 2x - 1 = 2 \cdot 0 - 1 = - 1\).
Do đó, cặp số \(\left( {0;\,\, - 1} \right)\) là nghiệm của phương trình \(2x - y = 1\), hay đường thẳng \(y = 2x - 1\) đi qua điểm \(\left( {0;\,\, - 1} \right)\).
Quan sát hình b) và hình d) ta thấy chỉ có đường thẳng \({d_4}\) thỏa mãn.
Vậy ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.