Câu hỏi:

05/07/2025 45 Lưu

(2,5 điểm)

1. Giải các phương trình sau:

a) \[2x(3x - 1) + 6x - 2 = 0\];

b) \(\frac{2}{{x - 3}} - \frac{3}{{x + 3}} = \frac{{3x + 5}}{{{x^2} - 9}}\).

2. Giải các bất phương trình sau:

a) \(3x - 8 > 4x - 12;\)

b) \(\frac{2}{3}\left( {2x + 3} \right) < 7 - 4x;\)

c) \(2x + 3\left( {x + 1} \right) > 5x - \left( {2x - 4} \right).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

1. a) \[2x(3x - 1) + 6x - 2 = 0\]

\[2x\left( {3x - 1} \right) + 2\left( {3x - 1} \right) = 0\]

\[\left( {3x - 1} \right)\left( {2x + 2} \right) = 0\]

\[2\left( {3x - 1} \right)\left( {x + 1} \right) = 0\]

\(3x - 1 = 0\) hoặc \(x + 1 = 0\)

\(x = \frac{1}{3}\) hoặc \(x = - 1\).

Vậy nghiệm của phương trình là \(x = \frac{1}{3}\) và \(x = - 1\).

1. b) \(\frac{2}{{x - 3}} - \frac{3}{{x + 3}} = \frac{{3x + 5}}{{{x^2} - 9}}\)

Điều kiện xác định \(x + 3 \ne 0\); \(x - 3 \ne 0\) và \({x^2} - 9 \ne 0\) hay \(x \ne - 3\) và \(x \ne 3\).

Quy đồng mẫu hai vế của phương trình, ta được

\(\frac{{2\left( {x + 3} \right) - 3\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{3x + 5}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\)

Suy ra \(2\left( {x + 3} \right) - 3\left( {x - 3} \right) = 3x + 5\)

\(2x + 6 - 3x + 9 = 3x + 5\)

\[15 - x = 3x + 5\]

\[4x = 10\]

\[x = \frac{5}{2}\].

Giá trị \[x = \frac{5}{2}\] thỏa mãn ĐKXĐ. Vậy nghiệm của phương trình là \[x = \frac{5}{2}\].

2. a) \(3x - 8 > 4x - 12\)

\(3x - 4x > - 12 + 8\)

\( - x > - 4\)

\(x < 4\).

Vậy nghiệm của bất phương trình đã cho là \(x < 4.\)

2. b) Ta có: \(\frac{2}{3}\left( {2x + 3} \right) < 7 - 4x\)

\(\frac{4}{3}x + 2 < 7 - 4x\)

\(\frac{4}{3}x + 4x < 5\)

\(\frac{{16}}{3}x < 5\)

\(x < \frac{{15}}{{16}}\).

Vậy nghiệm của bất phương trình là \(x < \frac{{15}}{{16}}\).

2. c) \(2x + 3\left( {x + 1} \right) > 5x - \left( {2x - 4} \right)\)

\(2x + 3x + 3 > 5x - 2x + 4\)

\(5x + 3 > 3x + 4\)

\(5x - 3x > 4 - 3\)

\(2x > 1\)

\(x > \frac{1}{2}.\)

Vậy bất phương trình đã cho có nghiệm là \(x > \frac{1}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi vận tốc của ô tô và vận tốc của xe máy lần lượt là \(x,y{\rm{ }}\left( {{\rm{km/h}}} \right)\) và \(x,y > 0.\)

Sau 2 giờ ô tô đi được quãng đường là \(2x{\rm{ }}\left( {{\rm{km}}} \right)\).

Sau 2 giờ xe máy đi được quãng đường là \(2y{\rm{ }}\left( {{\rm{km}}} \right)\)

Vì hai xe khởi hành cùng một lúc từ hai tỉnh cách nhau \(200{\rm{ km,}}\) đi ngược chiều và gặp nhau sau 2 giờ nên ta có phương trình \[2x + 2y = 200\] hay \[x + y = 100 & \left( 1 \right)\]

Nếu vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) thì vận tốc mới của ô tô là: \(x + 10{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Nếu vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì vận tốc mới của xe máy là \(y - 5{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Vì vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) và vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì lúc này vận tốc của ô tô bằng 2 lần vận tốc của xe máy nên ta có phương trình

\(x + 10 = 2\left( {y - 5} \right)\) hay \(x - 2y = - 20 & \left( 2 \right)\).

Từ \[\left( 1 \right)\] và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 100\\x - 2y = - 20\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được: \(3y = 120\), suy ra \(y = 40\) (thỏa mãn).

Thay \(y = 40\) vào phương trình \(x + y = 100\), ta được:

\(x + 40 = 100\) suy ra \(x = 60\) (thỏa mãn).

Vậy vận tốc của ô tô là \(60{\rm{ km/h}}\) và vận tốc của xe máy là \(40{\rm{ km/h}}\).

Lời giải

Hướng dẫn giải

a) Từ phương trình thứ nhất ta có \[2x + 5y = 8\] suy ra \(x = 4 - \frac{5}{2}y\). Thế vào phương trình thứ hai, ta được:

\[2\left( {4 - \frac{5}{2}y} \right) - 3y = 0\], tức là \[8 - 8y = 0\], suy ra \[8y = 8\] hay \[y = 1\].

Từ đó \[x = 4 - \frac{5}{2} = \frac{3}{2}.\]

Vậy hệ phương trình đã cho có nghiệm là \[\left( {\frac{3}{2}\,;\,\,1} \right).\]

b) Cộng từng vế của hai phương trình ta được \[2x + y + 5x - y = 14\] hay \[7x = 14\], suy ra \[x = 2.\]

Thế \[x = 2\] vào phương trình thứ nhất, ta được \[2 \cdot 2 + y = 4\], suy ra \(y = 0.\)

Vậy hệ phương trình đã cho có nghiệm là \[\left( {2\,;\,\,0} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP