Câu hỏi:

05/07/2025 23

Với ba số \(a,b\) và \(c < 0\), các khẳng định sau khẳng định nào đúng</>?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Từ giả thiết \(c < 0\) và điều kiện \(a > b\) ở 4 đáp án, ta có:</>

Nếu \(a > b\) và \(c < 0\) thì \(ac < bc\). Do đó đáp án A sai.

Nếu \(a > b\) và \(c < 0\) thì \(\frac{a}{c} < \frac{b}{c}.\) Do đó đáp án B sai.

Nếu \(a > b\) và \(c < 0\) thì \(ac < bc\). Do đó đáp án C đúng.

Nếu \(a > b\) và \(c < 0\) thì \(a + c > b + c.\) Do đó đáp án D sai.</>

Vậy chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi vận tốc của ô tô và vận tốc của xe máy lần lượt là \(x,y{\rm{ }}\left( {{\rm{km/h}}} \right)\) và \(x,y > 0.\)

Sau 2 giờ ô tô đi được quãng đường là \(2x{\rm{ }}\left( {{\rm{km}}} \right)\).

Sau 2 giờ xe máy đi được quãng đường là \(2y{\rm{ }}\left( {{\rm{km}}} \right)\)

Vì hai xe khởi hành cùng một lúc từ hai tỉnh cách nhau \(200{\rm{ km,}}\) đi ngược chiều và gặp nhau sau 2 giờ nên ta có phương trình \[2x + 2y = 200\] hay \[x + y = 100 & \left( 1 \right)\]

Nếu vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) thì vận tốc mới của ô tô là: \(x + 10{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Nếu vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì vận tốc mới của xe máy là \(y - 5{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Vì vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) và vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì lúc này vận tốc của ô tô bằng 2 lần vận tốc của xe máy nên ta có phương trình

\(x + 10 = 2\left( {y - 5} \right)\) hay \(x - 2y = - 20 & \left( 2 \right)\).

Từ \[\left( 1 \right)\] và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 100\\x - 2y = - 20\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được: \(3y = 120\), suy ra \(y = 40\) (thỏa mãn).

Thay \(y = 40\) vào phương trình \(x + y = 100\), ta được:

\(x + 40 = 100\) suy ra \(x = 60\) (thỏa mãn).

Vậy vận tốc của ô tô là \(60{\rm{ km/h}}\) và vận tốc của xe máy là \(40{\rm{ km/h}}\).

Lời giải

Hướng dẫn giải

⦁ Trước hết, ta chứng minh với \(a > 0\) và \(b > 0\) luôn có \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\]

Thật vậy, với \(a > 0\) và \(b > 0,\) ta có:

\[\frac{1}{a} + \frac{1}{b} - \frac{4}{{a + b}} = \frac{{b\left( {a + b} \right) + a\left( {a + b} \right) - 4ab}}{{ab\left( {a + b} \right)}} = \frac{{{a^2} - 2ab + {b^2}}}{{ab\left( {a + b} \right)}} = \frac{{{{\left( {a - b} \right)}^2}}}{{ab\left( {a + b} \right)}} \ge 0.\]\(\)

Do đó \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\,\,\,\left( * \right)\]

⦁ Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(2x > 0\) và \(y + z > 0,\) ta có:

\[\frac{1}{{2x}} + \frac{1}{{y + z}} \ge \frac{4}{{2x + y + z}}\]

Suy ra \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right).\]

Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(y > 0\) và \(z > 0,\) ta có:

\(\frac{1}{y} + \frac{1}{z} \ge \frac{4}{{y + z}}.\)

Suy ra \[\frac{1}{{y + z}} \le \frac{1}{4}\left( {\frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{{4y}} + \frac{1}{{4z}}.\]

Do đó: \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right) \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right).\]

Chứng minh tương tự, ta có:

\[\frac{1}{{x + 2y + z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right);\] \[\frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right).\]

Khi đó:

\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)

\( = \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)

\( = \frac{1}{4}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{4} \cdot 4 = 1\) (do \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4).\)

Vậy \(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP