Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 10\,\,{\rm{cm}},\,\,\widehat C = 40^\circ .\) Cạnh \(BC\) có độ dài gần nhất với kết quả nào dưới đây?
A. \(12,45\)cm.
B. \(15,56\,\,{\rm{cm}}{\rm{.}}\)
C. \(6,43\,\,{\rm{cm}}{\rm{.}}\)
D. \(8\)cm.
Quảng cáo
Trả lời:
Đáp án đúng là: B
|
Xét tam giác \(ABC\) vuông tại \(A\) có \[\widehat C = 40^\circ \], ta có: \[AB = BC \cdot \sin {\rm{ }}C.\] Suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{{10}}{{\sin 40^\circ }} \approx 15,56\,\,\left( {{\rm{cm}}} \right).\) Vậy \[BC\] có độ dài gần nhất với đáp án B. |
|
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi vận tốc của ô tô và vận tốc của xe máy lần lượt là \(x,y{\rm{ }}\left( {{\rm{km/h}}} \right)\) và \(x,y > 0.\)
Sau 2 giờ ô tô đi được quãng đường là \(2x{\rm{ }}\left( {{\rm{km}}} \right)\).
Sau 2 giờ xe máy đi được quãng đường là \(2y{\rm{ }}\left( {{\rm{km}}} \right)\)
Vì hai xe khởi hành cùng một lúc từ hai tỉnh cách nhau \(200{\rm{ km,}}\) đi ngược chiều và gặp nhau sau 2 giờ nên ta có phương trình \[2x + 2y = 200\] hay \[x + y = 100 & \left( 1 \right)\]
Nếu vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) thì vận tốc mới của ô tô là: \(x + 10{\rm{ }}\left( {{\rm{km/h}}} \right)\).
Nếu vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì vận tốc mới của xe máy là \(y - 5{\rm{ }}\left( {{\rm{km/h}}} \right)\).
Vì vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) và vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì lúc này vận tốc của ô tô bằng 2 lần vận tốc của xe máy nên ta có phương trình
\(x + 10 = 2\left( {y - 5} \right)\) hay \(x - 2y = - 20 & \left( 2 \right)\).
Từ \[\left( 1 \right)\] và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 100\\x - 2y = - 20\end{array} \right.\).
Trừ từng vế hai phương trình của hệ trên, ta được: \(3y = 120\), suy ra \(y = 40\) (thỏa mãn).
Thay \(y = 40\) vào phương trình \(x + y = 100\), ta được:
\(x + 40 = 100\) suy ra \(x = 60\) (thỏa mãn).
Vậy vận tốc của ô tô là \(60{\rm{ km/h}}\) và vận tốc của xe máy là \(40{\rm{ km/h}}\).
Lời giải
Hướng dẫn giải
1. Xét tam giác \(ABH\) vuông tại \(H\), ta có:

\(\sin A = \frac{{BH}}{{AH}}\) suy ra \(BH = AH.\sin A = 3.\sin 40^\circ \approx 1,9.\)
Xét tam giác \(ACK\) vuông tại \(K\), ta có:
\(AC = AB + BC = 3 + 2 = 5\).
\(\sin A = \frac{{CK}}{{AC}}\) suy ra \(CK = AC.\sin A = 5.\sin 40^\circ \approx 3,2\).
Xét tam giác \(ACK\) vuông tại \(K\), ta có:
\(\tan A = \frac{{CK}}{{AK}}\) suy ra \(AK = \frac{{CK}}{{\tan A}} = \frac{{3,2}}{{\tan 40^\circ }} \approx 3,8.\)
Vậy \(BH \approx 1,9\), \(CK \approx 3,2\), \(AK \approx 3,8.\)
2. Quan sát hình vẽ hình học của bài toán, ta có:

Độ cao của khinh khí cầu so với mặt đất là đoạn thẳng \(BE.\)
Xét tam giác \(ABC\) vuông tại \(A\), ta có:
\(\tan \widehat {BCA} = \frac{{AB}}{{AC}}\) hay \(AB = AC.\tan \widehat {BCA}\).
Suy ra \[AB = 800.\tan 38^\circ \approx 625\,\,\left( {\rm{m}} \right)\].
Ta có \(BE = AB + AE \approx 625 + 1,5 = 626,5\,\,\left( {\rm{m}} \right)\).
Vậy độ cao của khinh khí cầu so với mặt đất khoảng \(626,5\,\,{\rm{m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Nếu \[a > b\] thì \(ac > bc.\)
B. Nếu \(a > b\) thì \(\frac{a}{c} > \frac{b}{c}.\)
C. Nếu \(a > b\) thì \(ac < bc.\)
D. Nếu \(a > b\) thì \(a + c < b + c.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. số âm.
B. số dương.
C. số 0.
D. số tùy ý.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

