Đề thi giữa kì 1 môn Toán lớp 9 Chân trời sáng tạo có đáp án (Đề 3)
16 người thi tuần này 4.6 191 lượt thi 14 câu hỏi 60 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
15 câu Trắc nghiệm Toán 9 Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Nhận biết phương trình và hệ phương trình bậc nhất hai ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Điều kiện xác định của phương trình \(\frac{1}{{x - 3}} - 3 = \frac{2}{{\left( {x - 3} \right)\left( {x + 4} \right)}}\) là \[x - 3 \ne 0\] và \[x + 4 \ne 0,\] hay \[x \ne 3\] và \[x \ne - 4\].
Lời giải
Ta có: \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)
\(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)
\(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)
\(x = - 9\) hoặc \(x = 4\)
Vậy phương trình đã cho có hai nghiệm là \(x = - 9;\) \(x = 4\).
Lời giải

Cách 2. Thay \(x = 6;\,\,y = - 6\) vào hệ phương trình đã cho, ta được:
\(\left\{ \begin{array}{l}3 \cdot 6 + 4 \cdot \left( { - 6} \right) = - 6\,\,\left( { \ne 42} \right)\\10 \cdot 6 - 9 \cdot \left( { - 6} \right) = 114\,\,\left( { \ne 6} \right).\end{array} \right.\)
Tương tự, thay giá trị của \(x\) và \(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \(\left( {6;\,\,6} \right)\) là nghiệm của cả hai phương trình trong hệ.
Vậy cặp số \(\left( {6;\,\,6} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]
Cách 3. Giải hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]
Nhân hai vế của phương trình thứ nhất với \(10\) và nhân hai vế của phương trình thứ hai với \(3,\) ta được hệ phương trình mới \[\left\{ \begin{array}{l}30x + 40y = 420\\30x - 27y = 18.\end{array} \right.\]
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta được:
\(67y = 402\), suy ra \(y = 6\).
Thay \(y = 6\) vào phương trình \[3x + 4y = 42,\] ta được:
\[3x + 4 \cdot 6 = 42\] hay \[3x = 18\] suy ra \(x = 6.\)
Do đó, hệ phương trình đã cho có nghiệm duy nhất là \(\left( {6;\,\,6} \right)\).
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: A
Ta có: \(a < b\) và \(ac > bc\) nên ta có \(c < 0\), tức \(c\) là số âm.
Vậy ta chọn phương án A.
Lời giải
Đáp án đúng là: C
Từ giả thiết \(c < 0\) và điều kiện \(a > b\) ở 4 đáp án, ta có:</>
Nếu \(a > b\) và \(c < 0\) thì \(ac < bc\). Do đó đáp án A sai.
Nếu \(a > b\) và \(c < 0\) thì \(\frac{a}{c} < \frac{b}{c}.\) Do đó đáp án B sai.
Nếu \(a > b\) và \(c < 0\) thì \(ac < bc\). Do đó đáp án C đúng.
Nếu \(a > b\) và \(c < 0\) thì \(a + c > b + c.\) Do đó đáp án D sai.</>
Vậy chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.