Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6\end{array} \right.?\]
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 9 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:

Cách 2. Thay \(x = 6;\,\,y = - 6\) vào hệ phương trình đã cho, ta được:
\(\left\{ \begin{array}{l}3 \cdot 6 + 4 \cdot \left( { - 6} \right) = - 6\,\,\left( { \ne 42} \right)\\10 \cdot 6 - 9 \cdot \left( { - 6} \right) = 114\,\,\left( { \ne 6} \right).\end{array} \right.\)
Tương tự, thay giá trị của \(x\) và \(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \(\left( {6;\,\,6} \right)\) là nghiệm của cả hai phương trình trong hệ.
Vậy cặp số \(\left( {6;\,\,6} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]
Cách 3. Giải hệ phương trình \[\left\{ \begin{array}{l}3x + 4y = 42\\10x - 9y = 6.\end{array} \right.\]
Nhân hai vế của phương trình thứ nhất với \(10\) và nhân hai vế của phương trình thứ hai với \(3,\) ta được hệ phương trình mới \[\left\{ \begin{array}{l}30x + 40y = 420\\30x - 27y = 18.\end{array} \right.\]
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta được:
\(67y = 402\), suy ra \(y = 6\).
Thay \(y = 6\) vào phương trình \[3x + 4y = 42,\] ta được:
\[3x + 4 \cdot 6 = 42\] hay \[3x = 18\] suy ra \(x = 6.\)
Do đó, hệ phương trình đã cho có nghiệm duy nhất là \(\left( {6;\,\,6} \right)\).
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi vận tốc của ô tô và vận tốc của xe máy lần lượt là \(x,y{\rm{ }}\left( {{\rm{km/h}}} \right)\) và \(x,y > 0.\)
Sau 2 giờ ô tô đi được quãng đường là \(2x{\rm{ }}\left( {{\rm{km}}} \right)\).
Sau 2 giờ xe máy đi được quãng đường là \(2y{\rm{ }}\left( {{\rm{km}}} \right)\)
Vì hai xe khởi hành cùng một lúc từ hai tỉnh cách nhau \(200{\rm{ km,}}\) đi ngược chiều và gặp nhau sau 2 giờ nên ta có phương trình \[2x + 2y = 200\] hay \[x + y = 100 & \left( 1 \right)\]
Nếu vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) thì vận tốc mới của ô tô là: \(x + 10{\rm{ }}\left( {{\rm{km/h}}} \right)\).
Nếu vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì vận tốc mới của xe máy là \(y - 5{\rm{ }}\left( {{\rm{km/h}}} \right)\).
Vì vận tốc của ô tô tăng thêm \(10{\rm{ km/h}}\) và vận tốc của xe máy giảm đi \({\rm{5 km/h}}\) thì lúc này vận tốc của ô tô bằng 2 lần vận tốc của xe máy nên ta có phương trình
\(x + 10 = 2\left( {y - 5} \right)\) hay \(x - 2y = - 20 & \left( 2 \right)\).
Từ \[\left( 1 \right)\] và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 100\\x - 2y = - 20\end{array} \right.\).
Trừ từng vế hai phương trình của hệ trên, ta được: \(3y = 120\), suy ra \(y = 40\) (thỏa mãn).
Thay \(y = 40\) vào phương trình \(x + y = 100\), ta được:
\(x + 40 = 100\) suy ra \(x = 60\) (thỏa mãn).
Vậy vận tốc của ô tô là \(60{\rm{ km/h}}\) và vận tốc của xe máy là \(40{\rm{ km/h}}\).
Lời giải
Hướng dẫn giải
⦁ Trước hết, ta chứng minh với \(a > 0\) và \(b > 0\) luôn có \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\]
Thật vậy, với \(a > 0\) và \(b > 0,\) ta có:
\[\frac{1}{a} + \frac{1}{b} - \frac{4}{{a + b}} = \frac{{b\left( {a + b} \right) + a\left( {a + b} \right) - 4ab}}{{ab\left( {a + b} \right)}} = \frac{{{a^2} - 2ab + {b^2}}}{{ab\left( {a + b} \right)}} = \frac{{{{\left( {a - b} \right)}^2}}}{{ab\left( {a + b} \right)}} \ge 0.\]\(\)
Do đó \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\,\,\,\left( * \right)\]
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(2x > 0\) và \(y + z > 0,\) ta có:
\[\frac{1}{{2x}} + \frac{1}{{y + z}} \ge \frac{4}{{2x + y + z}}\]
Suy ra \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right).\]
Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(y > 0\) và \(z > 0,\) ta có:
\(\frac{1}{y} + \frac{1}{z} \ge \frac{4}{{y + z}}.\)
Suy ra \[\frac{1}{{y + z}} \le \frac{1}{4}\left( {\frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{{4y}} + \frac{1}{{4z}}.\]
Do đó: \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right) \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right).\]
Chứng minh tương tự, ta có:
\[\frac{1}{{x + 2y + z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right);\] \[\frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right).\]
Khi đó:
\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)
\( = \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)
\( = \frac{1}{4}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{4} \cdot 4 = 1\) (do \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4).\)
Vậy \(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.