Câu hỏi:

05/07/2025 11

Cho tam giác \(ABC\) vuông tại \(A\). Khi đó, \(\sin \widehat {ABC}\) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tam giác   A B C   vuông tại   A  . Khi đó,   sin ˆ A B C   bằng: (ảnh 1)

Tam giác

\[ABC\] vuông tại \[A\], ta có: \[\sin \widehat {ABC} = \frac{{AC}}{{BC}}\].

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. Xét \(\Delta ABD\) vuông tại \(A\), ta có: \(\tan \widehat {BAD} = \frac{3}{5}\) suy ra \(\widehat {BAD} \approx 31^\circ \) hay \(\alpha \approx 31^\circ \).

Xét tam giác \(ABC\), ta có: \(\widehat {BAC} = \widehat {BAD} + \widehat {DAC} \approx 31^\circ + 40^\circ = 71^\circ \).

Ta có: \(\tan \widehat {BAC} = \frac{{BC}}{{AB}}\) hay \(BC = AB.\tan \widehat {BAC} \approx 5.\tan 71^\circ \approx 14,52.\)

Lại có \(BD + DC = BC\) hay \(DC \approx 14,52 - 3 = 11,52\) suy ra \(x \approx 11,52.\)

Áp dụng định lý Pythagore vào tam giác \(ABC\), ta có: \(A{B^2} + A{C^2} = B{C^2}\)

Suy ra \(B{C^2} = {5^2} + 14,{5^2} = 235,25\) nên \(BC \approx 15,33\) hay \(y \approx 15,33.\)

Vậy \(\alpha \approx 31^\circ \), \(x \approx 11,52\), \(y \approx 15,33.\)

2. Xét tam giác \(ACD\) vuông tại \(D\), ta có: \(AD = CD.\tan \widehat {ACD} = 5.\cos 38^\circ .\)

Ta có chiều cao của cây là \(AH\).

\(AH = AD + DH = 5.\tan 38^\circ + 1,64 \approx 5,55\,\,\left( {\rm{m}} \right){\rm{.}}\)

Vậy chiều cao của cây khoảng \(5,55{\rm{ m}}.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP