Cho hệ phương trình \[\left\{ \begin{array}{l}3x + y = 4\\2x - y = 11\end{array} \right.\] có nghiệm \[\left( {x\,;\,\,y} \right).\] Tính giá trị \[{x^2} - {y^2}\].
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp số: \[ - 16.\]

Cách 2. Giải hệ phương trình \[\left\{ \begin{array}{l}3x + y = 4\\2x - y = 11\end{array} \right.\]
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(5x = 15\), suy ra \(x = 3.\)
Thay \(x = 3\) vào phương trình \(3x + y = 4,\) ta được: \(3 \cdot 3 + y = 4,\) hay \(9 + y = 4,\) suy ra \(y = - 5.\)
Do đó \[{x^2} - {y^2} = {3^2} - {\left( { - 5} \right)^2} = 9 - 25 = - 16.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
1) Từ \(B\) kẻ \(BK \bot AC\) tại \(K.\) Xét tam giác \(BCK\) vuông tại \(K\) nên \(BK = BC \cdot \sin C = 16 \cdot \sin 30^\circ = 8\,\,\left( {{\rm{cm}}} \right)\) Xét tam giác \(ABC\) có \(\widehat {BAK}\) là góc ngoài nên \(\widehat {BAK} = \widehat {ABC} + \widehat {ACB} = 45^\circ + 30^\circ = 75^\circ .\) Tam giác \(ABK\) vuông tại \(K\) nên \(\widehat {BAK} + \widehat {ABK} = 90^\circ \). |
|
Do đó
\(\widehat {ABK} = 90^\circ - \widehat {BAK} = 90^\circ - 75^\circ = 15^\circ .\)
Ta có \(\cos \widehat {ABK} = \frac{{BK}}{{AB}}\) suy ra \(AB = \frac{{BK}}{{\cos \widehat {ABK}}} = \frac{8}{{\cos 15^\circ }} \approx 8,28\,\,\left( {{\rm{cm}}} \right)\)
Tam giác \(ANB\) vuông cân tại \(N\) nên \(\widehat {ABN} = \widehat {BAN} = 45^\circ \); \(\sin \widehat {ABN} = \frac{{AN}}{{AB}}\).
Suy ra \(AN = AB \cdot \sin \widehat {ABK} \approx 8,28 \cdot \sin 45^\circ \approx 5,85\,\,\left( {{\rm{cm}}} \right)\).
Vậy \(AN \approx 5,85\,\,{\rm{cm}}\,.\)
|
2. Xét \(\Delta ABC\) vuông tại \(B\), ta có \(\tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{2}{{2,5}} = 0,8\) nên \(\widehat {BAC} \approx 38,7^\circ .\) Ta có \(\widehat {BAD} = \widehat {BAC} + \widehat {CAD} \approx 38,7^\circ + 20^\circ = 58,7^\circ .\) Xét \(\Delta ABD\) vuông tại \(B\), ta có \(BD = AB \cdot \tan \widehat {BAD} \approx 2,5 \cdot \tan 58,7^\circ \approx 4,1\,\,\left( {\rm{m}} \right).\) |
|
Do đó
\(CD = BD - BC \approx 4,1 - 2 = 2,1\,\,\left( {\rm{m}} \right).\)
Vậy độ dài vùng được chiếu sáng trên mặt đất khoảng \(2,1\) mét.
Câu 2
A. \(b = a \cdot \sin B = a \cdot \cos C\).
B. \(a = c \cdot \tan B = c \cdot \cot C\).
C. \({a^2} = {b^2} + {c^2}.\)
D. \(c = a \cdot \sin C = a \cdot \cos B\).
Lời giải
Đáp án đúng là: B
|
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: ⦁ \[B{C^2} = A{C^2} + A{B^2}\] hay \({a^2} = {b^2} + {c^2}\) (định lí Pythagore); ⦁ \[AC = BC \cdot \sin B = BC \cdot \cos C\] hay \(b = a \cdot \sin B = a \cdot \cos C\); ⦁ \(AB = BC \cdot \sin C = BC \cdot \cos B\) hay \(c = a \cdot \sin C = a \cdot \cos B\); Như vậy các khẳng định A, C, D đều đúng. Ta chọn phương án B. |
|
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {x;\,\,2} \right)\) với \(x \in \mathbb{R}\).
B. \(\left( {2;\,\,y} \right)\) với \(y \in \mathbb{R}\).
C. \(\left( {x;\,\,0} \right)\) với \(x \in \mathbb{R}\).
D. \(\left( {0;\,\,y} \right)\) với \(y \in \mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


