Câu hỏi:

05/07/2025 7

(0,5 điểm) Cho tứ giác \(ABCD\) có \(\alpha \) là góc nhọn tạo bởi hai đường chéo, chứng minh rằng: \({S_{ABCD}} = \frac{1}{2}AC \cdot BD \cdot \sin \alpha .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi \(E\) là giao điểm của hai đường chéo \(AC\) và \(BD.\) Kẻ đường cao \(AH\) xuống \(BD\) và đường cao \(DK\) xuống \(AC\).

Xét \(\Delta AEH\) vuông tại \(H\) có: \(AH = AE.\sin \alpha .\)

Do đó \({S_{ADE}} = \frac{1}{2}DE \cdot AH = \frac{1}{2}DE \cdot AE \cdot \sin \alpha .\)

Ta có: \(\frac{{{S_{ADE}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}DK \cdot AE}}{{\frac{1}{2}DK \cdot AC}} = \frac{{AE}}{{AC}}\)

(0,5 điểm) Cho tứ giác   A B C D   có   α   là góc nhọn tạo bởi hai đường chéo, chứng minh rằng:  S A B C D = 1 2 A C ⋅ B D ⋅ sin α . (ảnh 1)

Suy ra \({S_{ADC}} = \frac{{AC}}{{AE}} \cdot {S_{ADE}} = \frac{{AC}}{{AE}} \cdot \frac{1}{2}DE \cdot AE \cdot \sin \alpha = \frac{1}{2}DE \cdot AC \cdot \sin \alpha .\)

Tương tự, ta có: \({S_{ABC}} = \frac{1}{2}BE \cdot AC \cdot \sin \alpha \)

Khi đó: \({S_{ABCD}} = {S_{ADC}} + {S_{ABC}} = \frac{1}{2}DE \cdot AC \cdot \sin \alpha + \frac{1}{2}BE \cdot AC \cdot \sin \alpha \)

\( = \frac{1}{2}AC \cdot \left( {DE + BE} \right) \cdot \sin \alpha = \frac{1}{2}AC \cdot BD \cdot \sin \alpha \).

Vậy \({S_{ABCD}} = \frac{1}{2}AC \cdot BD \cdot \sin \alpha .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. a) \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)

\(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)

\(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)

\(x = - 9\) hoặc \(x = 4\)

Vậy phương trình đã cho có hai nghiệm là \(x = - 9;\) \(x = 4\).

1. b) \(\frac{{x + 3}}{{x + 1}} - \frac{{x - 1}}{x} = \frac{{{x^2} + 5x + 1}}{{x\left( {x + 1} \right)}}\)

Điều kiện xác định \(x \ne 0\) và \(x + 1 \ne 0\) hay \(x \ne 0\) và \(x \ne - 1.\)

Quy đồng mẫu hai vế của phương trình, ta được

\(\frac{{x\left( {x + 3} \right)}}{{x\left( {x + 1} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{{{x^2} + 5x + 1}}{{x\left( {x + 1} \right)}}\)

Suy ra \(x\left( {x + 3} \right) - \left( {x - 1} \right)\left( {x + 1} \right) = {x^2} + 5x + 1\)

\({x^2} + 3x - \left( {{x^2} - 1} \right) = {x^2} + 5x + 1\)

\[{x^2} + 3x - {x^2} + 1 = {x^2} + 5x + 1\]

\(3x + 1 = {x^2} + 5x + 1\)

\[{x^2} + 2x = 0\]

\[x\left( {x + 2} \right) = 0\]

\(x = 0\) hoặc \[x + 2 = 0\]

\(x = 0\) hoặc \[x = - 2\]

Đối chiếu ĐKXĐ suy ra \[x = - 2\] là nghiệm của phương trình.

2. a) \(\frac{{3 - 2x}}{2} > 4\)

\(\frac{{3 - 2x}}{2} \cdot 2 > 4 \cdot 2\)

\(3 - 2x > 8\)

\( - 2x > 5\)

\(x < - \frac{5}{2}\).

Vậy nghiệm của bất phương trình đã cho là \(x < - \frac{5}{2}\).

2. b) \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]

\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]

\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]

\[3x < - 7\]

\[x < - \frac{7}{3}\]

Vậy nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]

2. c) \[\frac{{4x - 1}}{2} + \frac{{6x - 19}}{6} \ge \frac{{9x - 11}}{3}\]

\[\frac{{3\left( {4x - 1} \right)}}{6} + \frac{{6x - 19}}{6} \ge \frac{{2\left( {9x - 11} \right)}}{6}\]

\[3\left( {4x - 1} \right) + 6x - 19 \ge 2\left( {9x - 11} \right)\]

\[12x - 3 + 6x - 19 \ge 18x - 22\]

\[12x + 6x - 18x \ge - 22 + 3 + 19\]

\[0x \ge 0\].

Vậy nghiệm của bất phương trình đã cho là \(x \in \mathbb{R}.\)

Lời giải

Hướng dẫn giải

1) Từ \(B\) kẻ \(BK \bot AC\) tại \(K.\)

Xét tam giác \(BCK\) vuông tại \(K\) nên

\(BK = BC \cdot \sin C = 16 \cdot \sin 30^\circ = 8\,\,\left( {{\rm{cm}}} \right)\)

Xét tam giác \(ABC\) có \(\widehat {BAK}\) là góc ngoài nên

\(\widehat {BAK} = \widehat {ABC} + \widehat {ACB} = 45^\circ + 30^\circ = 75^\circ .\)

Tam giác \(ABK\) vuông tại \(K\) nên \(\widehat {BAK} + \widehat {ABK} = 90^\circ \).

1. Cho tam giác   A B C   có   B C = 16 c m , ˆ A B C = 45 ∘ , ˆ A C B = 30 ∘ .   Gọi   N   là chân đường vuông góc kẻ từ   A   đến cạnh   B C .   Tính độ dài cạnh   A N   (làm tròn kết quả đến chữ số thập phân thứ hai).  2. Người ta cần lắp đặt một thiết bị chiếu sáng gắn trên tường cho một phòng triển lãm như hình vẽ. Thiết bị này có góc chiếu sáng là   20 ∘   và cần đặt cao hơn mặt đất là   2 , 5 m .   Người ta đặt thiết bị chiếu sáng này sát tường và được canh chỉnh sao cho trên mặt đất dải ánh sáng bắt đầu từ vị trí cách tường   2 m   (như hình vẽ). Tính độ dài vùng được chiếu sáng trên mặt đất (làm tròn kết quả đến chữ số thập phân thứ nhất). (ảnh 3)

Do đó

\(\widehat {ABK} = 90^\circ - \widehat {BAK} = 90^\circ - 75^\circ = 15^\circ .\)

Ta có \(\cos \widehat {ABK} = \frac{{BK}}{{AB}}\) suy ra \(AB = \frac{{BK}}{{\cos \widehat {ABK}}} = \frac{8}{{\cos 15^\circ }} \approx 8,28\,\,\left( {{\rm{cm}}} \right)\)

Tam giác \(ANB\) vuông cân tại \(N\) nên \(\widehat {ABN} = \widehat {BAN} = 45^\circ \); \(\sin \widehat {ABN} = \frac{{AN}}{{AB}}\).

Suy ra \(AN = AB \cdot \sin \widehat {ABK} \approx 8,28 \cdot \sin 45^\circ \approx 5,85\,\,\left( {{\rm{cm}}} \right)\).

Vậy \(AN \approx 5,85\,\,{\rm{cm}}\,.\)

2. Xét \(\Delta ABC\) vuông tại \(B\), ta có

\(\tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{2}{{2,5}} = 0,8\) nên \(\widehat {BAC} \approx 38,7^\circ .\)

Ta có \(\widehat {BAD} = \widehat {BAC} + \widehat {CAD} \approx 38,7^\circ + 20^\circ = 58,7^\circ .\)

Xét \(\Delta ABD\) vuông tại \(B\), ta có

\(BD = AB \cdot \tan \widehat {BAD} \approx 2,5 \cdot \tan 58,7^\circ \approx 4,1\,\,\left( {\rm{m}} \right).\)

1. Cho tam giác   A B C   có   B C = 16 c m , ˆ A B C = 45 ∘ , ˆ A C B = 30 ∘ .   Gọi   N   là chân đường vuông góc kẻ từ   A   đến cạnh   B C .   Tính độ dài cạnh   A N   (làm tròn kết quả đến chữ số thập phân thứ hai).  2. Người ta cần lắp đặt một thiết bị chiếu sáng gắn trên tường cho một phòng triển lãm như hình vẽ. Thiết bị này có góc chiếu sáng là   20 ∘   và cần đặt cao hơn mặt đất là   2 , 5 m .   Người ta đặt thiết bị chiếu sáng này sát tường và được canh chỉnh sao cho trên mặt đất dải ánh sáng bắt đầu từ vị trí cách tường   2 m   (như hình vẽ). Tính độ dài vùng được chiếu sáng trên mặt đất (làm tròn kết quả đến chữ số thập phân thứ nhất). (ảnh 4)

Do đó

\(CD = BD - BC \approx 4,1 - 2 = 2,1\,\,\left( {\rm{m}} \right).\)

Vậy độ dài vùng được chiếu sáng trên mặt đất khoảng \(2,1\) mét.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP