(3,0 điểm)
a) Cho \(4,2 < a < 4,3\). Chứng minh \(13,8 < 3a + 1,2 < 14,1.\)
b) Cho hệ phương trình \(\left\{ \begin{array}{l}2mx + y = m\\x - my = - 1 - 6m\end{array} \right.\). Tìm giá trị của tham số \(m\) để cặp số \(\left( { - 2;\,\,1} \right)\) là nghiệm của hệ phương trình đã cho.
c) Giải bài toán sau bằng cách lập hệ phương trình:
Một khu vườn hình chữ nhật có chu vi bằng \[68{\rm{ m}}.\] Nếu tăng chiều rộng lên gấp đôi và chiều dài lên gấp ba thì chu vi khu vườn mới là \[178{\rm{ m}}.\] Tính diện tích ban đầu của khu vườn.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có: \(4,2 < a < 4,3\)
\(3.4,2 < 3a < 3.4,3\)
\(12,6 < 3a < 12,9\)
\(12,6 + 1,2 < 3a + 1,2 < 12,9 + 1,2\)
\(13,8 < 3a + 1,2 < 14,1.\)
Vậy ta có điều phải chứng minh.
b) Để cặp số \(\left( { - 2;\,\,1} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2mx + y = m\\x - my = - 1 - 6m\end{array} \right.\) thì \(x = - 2\) và \(y = 1\) phải thỏa mãn cả hai phương trình của hệ.
Thay \(x = - 2\) và \(y = 1\) vào hệ phương trình đã cho, ta được \(\left\{ \begin{array}{l}2m \cdot \left( { - 2} \right) + 1 = m\\ - 2 - m \cdot 1 = - 1 - 6m\end{array} \right.\)
hay \(\left\{ \begin{array}{l} - 4m + 1 = m\\ - 2 - m = - 1 - 6m\end{array} \right.\) tức là \(\left\{ \begin{array}{l}1 = 5m\\5m = 1\end{array} \right.\), suy ra \(m = \frac{1}{5}\).
Vậy để cặp số \[\left( { - 2\,;\,1} \right)\] là nghiệm của hệ phương trình đã cho thì \(m = \frac{1}{5}.\)
c) Gọi \[x\,\,\left( {\rm{m}} \right)\] là chiều rộng của khu vườn lúc đầu \[\left( {x > 0} \right).\]
\[y\,\,\left( {\rm{m}} \right)\] là chiều rộng của khu vườn lúc đầu \[\left( {y > 0} \right).\]
Khu vườn lúc đầu có chu vi bằng \[68{\rm{ m}}\] nên \[2x + 2y = 68\] hay \[x + y = 34\,\,\,\,\left( 1 \right)\]
Chiều rộng khu vườn sau khi tăng là \[2x\,\,\left( {\rm{m}} \right)\]
Chiều dài khu vườn sau khi tăng là \[3y\,\,\left( {\rm{m}} \right)\]
Chu vi của khu vườn sau khi tăng là \[2 \cdot 2x + 2 \cdot 3y = 178\] hay \[2x + 3y = 89{\rm{ }}\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 34\\2x + 3y = 89\end{array} \right.\).
Từ phương trình thứ nhất ta có \(x = 34 - y\). Thế vào phương trình thứ hai, ta được
\(2\left( {34 - y} \right) + 3y = 89\), tức là \(2y = 42\), suy ra \(y = 21\,\,\left( {{\rm{TM}}} \right)\).
Từ đó \(x = 34 - 21 = 13\,\,\left( {{\rm{TM}}} \right)\).
Khi đó, chiều rộng lúc ban đầu là 13 m và chiều dài lúc ban đầu là 21 m.
Diện tích ban đầu của khu vườn là: \(13 \cdot 21 = 273\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Vậy diện tích ban đầu của khu vườn là \(273\,\,{{\rm{m}}^{\rm{2}}}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) \(A = \sin 35^\circ + \sin 67^\circ - \cos 23^\circ - \cos 55^\circ \) \( = \sin 35^\circ + \sin 67^\circ - \sin \left( {90^\circ - 23^\circ } \right) - \sin \left( {90^\circ - 55^\circ } \right)\) \( = \sin 35^\circ + \sin 67^\circ - \sin 67^\circ - \sin 35^\circ = 0.\) Vậy \(A = 0.\) |
b) \(B = \frac{{\sin 10^\circ }}{{\cos 80^\circ }} - \frac{{\cos 20^\circ }}{{\sin 70^\circ }} + \frac{{\tan 15^\circ }}{{\cot 75^\circ }}\) \( = \frac{{\sin 10^\circ }}{{\sin 10^\circ }} - \frac{{\cos 20^\circ }}{{\cos 20^\circ }} + \frac{{\tan 15^\circ }}{{\tan 15^\circ }}\) \( = 1 - 1 + 1 = 1.\) |
Câu 2
A. \(a < b.\)
B. \(a \ge b.\)
C. \(a \le b.\)
D. \(a > b.\)
Lời giải
Đáp án đúng là: B
Phát biểu “\(a\) không nhỏ hơn \(b\)” tức là “\(a\) lớn hơn hoặc bằng \(b\)” được biểu diễn như sau: \(a \ge b.\)
Vậy chọn đáp án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\sin \alpha = \sin \beta \).
B. \(\cos \alpha = \cos \beta \).
C. \(\tan \alpha = \cot \beta \).
D. \(\tan \alpha = \tan \beta \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[2{x^2} + 2 = 0\].
B. \[3y - 1 = 5y\left( {y - 2} \right)\].
C. \(2x + \frac{y}{2} - 1 = 0.\)
D. \[\frac{3}{x} + y = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\left( { - 3\,;\,\,2} \right)\].
B. \[\left( {3\,;\,\,2} \right)\].
C. \[\left( {3\,;\,\, - 2} \right)\].
D. \[\left( { - 3\,;\,\, - 2} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

