Câu hỏi:

17/07/2025 25 Lưu

A. TRẮC NGHIỆM (7,0 điểm)

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Phân số cùng biểu diễn số hữu tỉ \(\frac{1}{3}\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Nhận thấy,

• \(\frac{2}{4} = \frac{{2:2}}{{4:2}} = \frac{1}{2}\).

• \(\frac{6}{{18}} = \frac{{6:6}}{{18:6}} = \frac{1}{3}\).

• \(\frac{{ - 3}}{9} = \frac{{ - 3:3}}{{9:3}} = \frac{{ - 1}}{3}.\)

Do đó, phân số cùng biểu diễn số hữu tỉ \(\frac{1}{3}\) là \(\frac{6}{{18}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Nhận thấy \(\widehat {BAC}\) và \(\widehat {CAx}\) là hai góc kề bù.

Do đó, ta có: \(\widehat {BAC} + \widehat {CAx} = 180^\circ \) nên \(\widehat {xAC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \).

Lại có \(Ay\) là tia phân giác của \(\widehat {xAC}\) nên \(\widehat {CAy} = \widehat {yAx} = \frac{{\widehat {CAx}}}{2} = \frac{{80^\circ }}{2} = 40^\circ \).

Suy ra \(\widehat {yAx} = \widehat {ABC} = 40^\circ \).

Mà hai góc ở vị trí đồng vị nên \(Ay\parallel BC\).

b)

(1,0 điểm) Cho hình vẽ bên, biết rằng   A y   là phân giác của   ˆ x A C .      a) Chứng minh rằng   A y ∥ B C  .  b) Kẻ tia   A z   là tia phân giác của   ˆ B A C  . Chứng minh rằng   A z ⊥ A y . (ảnh 2)

Vì tia \(Az\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAz} = \widehat {zAC} = \widehat {\frac{{BAC}}{2}} = \frac{{100^\circ }}{2} = 50^\circ \).

Nhận thấy \(\widehat {yAC}\) và \(\widehat {zAC}\) là hai góc kề nhau nên \(\widehat {zAC} + \widehat {yAC} = \widehat {zAy}\) .

Suy ra \(\widehat {zAy} = 40^\circ + 50^\circ = 90^\circ \).

Do đó, \(Az \bot Ay\).

Câu 2

Lời giải

Đáp án đúng là: D

Ta có: \(\sqrt {0,04} = \sqrt {{{\left( {0,2} \right)}^2}} = 0,2.\)

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP