Hình ảnh bên là ảnh của một lọ nước hoa hình kim tự tháp. Khi đậy nắp, lọ có dạng hình chóp tứ giác đều (tính cả thân lọ và nắp lọ) trong đó nắp lọ cũng là hình chóp tứ giác đều có chiều cao \[5{\rm{ cm}},\] cạnh đáy \[2,5{\rm{ cm}}.\] Chiều cao thân lọ và cạnh đáy lọ đều bằng chiều cao của nắp lọ. Bỏ qua độ dày của vỏ. Tính dung tích của lọ nước hoa đó ra đơn vị mi – li – lít (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp số: 73.
Thể tích của lọ nước hoa hình kim tự tháp là: \[{V_1} = \frac{1}{3} \cdot {5^2} \cdot 10 = \frac{{250}}{3}\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right).\]
Thể tích của nắp lọ nước hoa là: \[{V_2} = \frac{1}{3} \cdot 2,{5^2} \cdot 5 = \frac{{125}}{{12}}\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right).\]
Dung tích của lọ nước hoa đó là: \(\frac{{250}}{3} - \frac{{125}}{{12}} \approx 73\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right) = 73\,\,\left( {{\rm{ml}}} \right)\).
Vậy dung tích của lọ nước hoa đó là \(73\,\,{\rm{ml}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Hàm số \[T\] theo t đối với công ty A là: \[T = 150\,\,000t + 300\,\,000.\]
Hàm số \[T\] theo t đối với công ty B là: \[T = 200\,\,000t.\]
b) Thay \[t = 5\] vào công thức \[T = 150\,\,000t + 300\,\,000\], ta được:
\[T = 15\,\,0000 \cdot 5 + 300\,\,000 = 1\,\,050\,\,000\] (đồng).
Vậy đối với công ty A, sau khi sử dụng dịch vụ truyền hình cáp trong 5 tháng thì số tiền phải trả là \(1\,\,050\,\,000\) đồng.
Thay \[t = 5\] vào công thức \[T = 200\,\,000t\], ta được:
\[T = 200\,\,000 \cdot 5 = 1\,\,000\,\,000\] (đồng).
Vậy đối với công ty B, sau khi sử dụng dịch vụ truyền hình cáp trong 5 tháng thì số tiền phải trả là \(1\,\,000\,\,000\) đồng.
c) Để dịch vụ truyền hình cáp của công ty A lợi hơn dịch vụ truyền hình cáp của công ty B thì:
\[150\,\,000t + 300\,\,000 < 200\,\,000t\].
Suy ra \[300\,\,000 < 50{\rm{ }}000t\] hay \[t > 6.\]
Vậy nếu sử dụng từ 7 tháng trở lên thì sử dụng dịch vụ truyền hình cáp bên công ty A sẽ có lợi hơn.
Lời giải
Hướng dẫn giải
Đáp án:
a) Đúng.
b) Sai.
c) Sai.
d) Đúng.
⦁ Ta có \[G = \left( {7{x^5}{y^4}{z^3} - 3{x^4}y{z^2} + 2{x^2}{y^2}z} \right):{x^2}yz\]
\[ = 7{x^5}{y^4}{z^3}:{x^2}yz - 3{x^4}y{z^2}:{x^2}yz + 2{x^2}{y^2}z:{x^2}yz\]
\[ = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\].
Đa thức \(G\) có bậc là 8. Do đó ý a) đúng.
⦁ Thay \(x = 1\,;\,\,y = - 1\,;\,\,z = 1\) vào biểu thức \(G\), ta có:
\(G = 7 \cdot {1^3} \cdot {\left( { - 1} \right)^3} \cdot {1^2} - 3 \cdot {1^2} \cdot 1 + 2 \cdot \left( { - 1} \right) = - 7 - 3 - 2 = - 12.\)
Vậy với \(x = 1\,;\,\,y = - 1\,;\,\,z = 1\) thì \(G = - 12\). Do đó ý b) sai.
⦁ Ta có \(A + 14{x^3}{y^3}{z^2} - 6{x^2}z = G\) hay \(A + 14{x^3}{y^3}{z^2} - 6{x^2}z = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\)
Suy ra \(A = \left( {7{x^3}{y^3}{z^2} - 3{x^2}z + 2y} \right) - 2y\)
\( = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y - 14{x^3}{y^3}{z^2} + 6{x^2}z\)
\( = - 7{x^3}{y^3}{z^2} + 3{x^2}z\).
Khi đó, đa thức \[A\] hạng tử tự do là 0. Do đó ý c) sai.
⦁ Ta có \[A + G = \left( { - 7{x^3}{y^3}{z^2} + 3{x^2}z} \right) + \left( {7{x^3}{y^3}{z^2} - 3{x^2}z + 2y} \right)\]
\[ = - 7{x^3}{y^3}{z^2} + 3{x^2}z + 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\]
\[ = \left( { - 7{x^3}{y^3}{z^2} + 7{x^3}{y^3}{z^2}} \right) + \left( {3{x^2}z - 3{x^2}z} \right) + 2y\]\( = 2y\).
Như vậy, tổng của hai đa thức \[A\] và \(G\) là một đơn thức. Do đó ý d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.