Cho tam giác \[ABC\] có \[AM\] là đường trung tuyến. Lấy \[D\] thuộc \[AC\] sao cho \[AD = \frac{1}{2}DC\]. Kẻ \[ME\parallel BD\] \[\left( {E \in DC} \right)\], \[BD\] cắt \[AM\] tại \[I\].
a) \[AD = \frac{1}{2}DE.\]
b) \[I\] là trung điểm của \[AM\].
c) \[{S_{AIB}} = {S_{IMB}}.\]
d) \[{S_{ABC}} = 3{S_{IBC}}.\]
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án:
a) Sai.
b) Đúng.
c) Đúng.
d) Sai.
⦁ Xét \[\Delta DCB\] có \[ME\parallel DB\] và \[M\] là trung điểm của \[BC\] nên \[ME\] là đường trung bình của tam giác \[BDC\].
Suy ra \[E\] là trung điểm của \[DE\] nên \[DE = EC = \frac{1}{2}DC\].
Như vậy \[AD = DE.\] Do đó ý a) sai.
⦁ Xét tam giác \[AME\] có \[ID\parallel ME\] và \[AD = DE\] nên \[DI\] là đường trung bình của tam giác \[AME.\]
Suy ra \[I\] là trung điểm của cạnh \[AM.\] Do đó ý b) đúng.
⦁ Hai tam giác \[ABI\] và \[IBM\] có cùng chiều cao hạ từ đỉnh \[B\] xuống đáy \[AM\], gọi là \[{h_B}.\]
Khi đó, diện tích của hai tam giác \[ABI\] và \[IBM\] là: \[{S_{ABI}} = \frac{1}{2}{h_B} \cdot AI;{\rm{ }}{S_{BMI}} = \frac{1}{2}{h_B} \cdot IM\].
Mà \[AI = AM\] nên \[{S_{AIB}} = {S_{IMB}}.\] Do đó ý c) đúng.
⦁ Gọi \[{h_A},\,\,{h_I}\] lần lượt chiều cao hạ từ \[A\] và \[I\] xuống đáy \[BC\].
Vì \[I\] là trung điểm của cạnh \[AM\] nên \[{h_A} = 2{h_I}\].
Diện tích của hai tam giác \[ABI\] và \[IBM\] là:
\[{S_{ABC}} = \frac{1}{2}{h_A} \cdot BC\,;{\rm{ }}{S_{IBC}} = \frac{1}{2}{h_I} \cdot BC\].
Khi đó, \[\frac{{{S_{ABC}}}}{{{S_{IBC}}}} = \frac{{\frac{1}{2}{h_A} \cdot BC}}{{\frac{1}{2}{h_I} \cdot BC}} = \frac{{{h_A}}}{{{h_I}}} = 2\] nên \[{S_{ABC}} = 2{S_{IBC}}.\] Do đó ý d) sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 2.
Vì \(AD\) là tia phân giác \(\Delta ABC\) nên ta có \[\frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}\].
Suy ra \[\frac{4}{8} = \frac{{BD}}{{CD}}\] hay \[\frac{{BD}}{4} = \frac{{CD}}{8}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{BD}}{4} = \frac{{CD}}{8} = \frac{{BD + CD}}{{4 + 8}} = \frac{{BC}}{{12}} = \frac{6}{{12}} = \frac{1}{2}\].
Do đó \[BD = 4 \cdot \frac{1}{2} = 2\,\,{\rm{(cm)}}\]
Vậy độ dài đoạn thẳng \[BD\] bằng 2 cm.
Lời giải
Hướng dẫn giải
Đáp số: 35.
Xét tứ giác \[MNPQ,\] ta có: \(\widehat Q + \widehat {QMN} + \widehat N + \widehat {NPQ} = 360^\circ \) (tổng các góc của một tứ giác).
Suy ra \(\widehat {NPQ} = 360^\circ - \left( {\widehat {QMN} + \widehat N + \widehat Q} \right) = 360^\circ - \left( {110^\circ + 120^\circ + 60^\circ } \right) = 70^\circ \).
Do \[PM\] là tia phân giác của góc \[NPQ\] nên ta có: \(\widehat {MPQ} = \frac{{\widehat {NPQ}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \).
Vậy số đo của \(\widehat {MPQ}\) là \(35^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.