Câu hỏi:

17/07/2025 9 Lưu

(1,0 điểm) Cho tam giác \(ABC\) vuông ở \(A\). Gọi \(E,\,\,G,\,\,F\) lần lượt là trung điểm của \(AB,\,\,BC,\,\,AC.\) Từ \(E\) kẻ đường thẳng song song với \(BF\), đường thẳng này cắt \(GF\) tại \(I.\)

a) Chứng minh tứ giác \(BEIF\) là hình bình hành.

b) Tìm điều kiện của tam giác \(ABC\) để tứ giác \(AGCI\) là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Vì \(G\), \(F\) lần lượt là trung điểm của \(BC\), \(AC\) nên \(GF\) là đường trung bình của tam giác \(ABC.\)

Suy ra \(GF\,{\rm{//}}\,AB\) nên \[BE\,{\rm{//}}\,IF\].

Tứ giác \(BEIF\)có \[BE\,{\rm{//}}\,IF\] (cmt) và \[BF\,{\rm{//}}\,IE\] (gt).

Do đó, tứ giác \(BEIF\) là hình bình hành.

b) Ta có \(GF\,{\rm{//}}\,AB\) và \(AC \bot AB\) nên \(AC \bot GF\).

Ta thấy \[IF = BE\] (vì tứ giác \(BEIF\) là hình bình hành).

Mà \(GF\) là đường trung bình của tam giác \(ABC\) nên \[GF = \frac{1}{2}AB = BE\].

(1,0 điểm) Cho tam giác   A B C   vuông ở   A  . Gọi   E , G , F   lần lượt là trung điểm của   A B , B C , A C .   Từ   E   kẻ đường thẳng song song với   B F  , đường thẳng này cắt   G F   tại   I .    a) Chứng minh tứ giác   B E I F   là hình bình hành.  b) Tìm điều kiện của tam giác   A B C   để tứ giác   A G C I   là hình vuông. (ảnh 1)

Do đó, \[GF = IF = BE\] nên \(F\) là trung điểm của \(IG.\)

Tứ giác \(AGCI\) có hai đường chéo \(AC\) và \(IG\) cắt nhau tại trung điểm mỗi đường.

Suy ra, tứ giác \(AGCI\) là hình bình hành.

Hình bình hành \(AGCI\) có hai đường chéo \(AC\) và \(IG\) vuông góc với nhau nên tứ giác \(AGCI\) là hình thoi.

Để tứ giác \(AGCI\) là hình vuông thì \(\widehat {AGC} = 90^\circ \).

Khi đó, tam giác \(ABC\) có \(\widehat {AGC} = 90^\circ \) nên tam giác \(ABC\) vuông cân tại \(A\).

Vậy để tứ giác \(AGCI\) là hình vuông thì tam giác \(ABC\) vuông cân tại \(A\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: 2.

Vì \(AD\) là tia phân giác \(\Delta ABC\) nên ta có \[\frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}\].

Suy ra \[\frac{4}{8} = \frac{{BD}}{{CD}}\] hay \[\frac{{BD}}{4} = \frac{{CD}}{8}\].

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\[\frac{{BD}}{4} = \frac{{CD}}{8} = \frac{{BD + CD}}{{4 + 8}} = \frac{{BC}}{{12}} = \frac{6}{{12}} = \frac{1}{2}\].

Do đó \[BD = 4 \cdot \frac{1}{2} = 2\,\,{\rm{(cm)}}\]

Vậy độ dài đoạn thẳng \[BD\] bằng 2 cm.

Lời giải

Hướng dẫn giải

Đáp số: 35.

Cho tứ giác   M N P Q   có   P M   là tia phân giác của góc   ˆ N P Q .   Biết   ˆ Q M N = 110 ∘ ,     ˆ N = 120 ∘   và   ˆ Q = 60 ∘ .   Tính số đo của   ˆ M P Q   (đơn vị: độ). (ảnh 1)

Xét tứ giác \[MNPQ,\] ta có: \(\widehat Q + \widehat {QMN} + \widehat N + \widehat {NPQ} = 360^\circ \) (tổng các góc của một tứ giác).

Suy ra \(\widehat {NPQ} = 360^\circ - \left( {\widehat {QMN} + \widehat N + \widehat Q} \right) = 360^\circ - \left( {110^\circ + 120^\circ + 60^\circ } \right) = 70^\circ \).

Do \[PM\] là tia phân giác của góc \[NPQ\] nên ta có: \(\widehat {MPQ} = \frac{{\widehat {NPQ}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \).

Vậy số đo của \(\widehat {MPQ}\) là \(35^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP