(0,5 điểm) Bố Bình có một vườn cây hình tam giác, 3 đỉnh góc vườn có lắp 3 vòi tưới, 3 mép vườn lần lượt trồng ổi, táo và bưởi. Vì hàng bưởi dài nên bố Bình muốn lắp thêm một vòi tưới số 4 tại hàng bưởi sao cho khoảng cách từ vòi này tới vòi 2 và tới vòi 3 tỉ lệ với độ dài hàng ổi và hàng táo, biết góc vườn tại vòi 1 là \(110^\circ \).
Hãy xác định vị trí của điểm đặt vòi 4 và cho biết khoảng cách từ vòi tưới số 4 tới vòi tưới số 3, biết khoảng cách từ vòi 2 đến vòi 4 là \[12\,\,{\rm{m}}\] và chiều dài hàng ổi là \[15\,\,{\rm{m}}\], hàng táo là \[20\,\,{\rm{m}}.\]
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \(D\) là vị trí của điểm đặt vòi 4.
Vì khoảng cách từ vòi bơm số 4 đến vòi 2 và đến vòi 3 tỉ lệ với chiều dài hàng ổi và hàng táo nên đường thẳng \[AD\] (đi qua vòi 1 và vòi 4) là đường phân giác của tam giác \[ABC.\]
Khi đó, vị trí vòi 4 là điểm \(D\) (giao điểm của đường phân giác tại góc vườn \(110^\circ \) với hàng bưởi).
Khoảng cách từ vòi 2 đến vòi 4 là \[12\,\,{\rm{m}}\] nên \[BD = 12\,\,{\rm{m}}\];
Chiều dài hàng ổi là \[15\,\,{\rm{m}}\], hàng táo là \[20\,\,{\rm{m}}\] nên \[AB = 15\,\,{\rm{m}}\,{\rm{;}}\,\,AC = 15\,\,{\rm{m}}\].
Khoảng cách từ vòi tưới số 4 tới vòi tưới số 3 là \(CD\).
Xét \(\Delta ABC\) có \(AD\) là tia phân giác nên ta có: \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (tính chất đường phân giác).
Hay \(\frac{{12}}{{CD}} = \frac{{15}}{{20}}\) suy ra \(CD = \frac{{12 \cdot 20}}{{15}} = 16\,\,\left( {\rm{m}} \right){\rm{.}}\)
Vậy vị trí của điểm đặt vòi 4 là giao điểm của đường phân giác tại góc vườn \(110^\circ \) với hàng bưởi; khoảng cách từ vòi tưới số 4 tới vòi tưới số 3 là \[16\,\,{\rm{m}}.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Vì \(G\), \(F\) lần lượt là trung điểm của \(BC\), \(AC\) nên \(GF\) là đường trung bình của tam giác \(ABC.\) Suy ra \(GF\,{\rm{//}}\,AB\) nên \[BE\,{\rm{//}}\,IF\]. Tứ giác \(BEIF\)có \[BE\,{\rm{//}}\,IF\] (cmt) và \[BF\,{\rm{//}}\,IE\] (gt). Do đó, tứ giác \(BEIF\) là hình bình hành. b) Ta có \(GF\,{\rm{//}}\,AB\) và \(AC \bot AB\) nên \(AC \bot GF\). Ta thấy \[IF = BE\] (vì tứ giác \(BEIF\) là hình bình hành). Mà \(GF\) là đường trung bình của tam giác \(ABC\) nên \[GF = \frac{1}{2}AB = BE\]. |
|
Do đó, \[GF = IF = BE\] nên \(F\) là trung điểm của \(IG.\)
Tứ giác \(AGCI\) có hai đường chéo \(AC\) và \(IG\) cắt nhau tại trung điểm mỗi đường.
Suy ra, tứ giác \(AGCI\) là hình bình hành.
Hình bình hành \(AGCI\) có hai đường chéo \(AC\) và \(IG\) vuông góc với nhau nên tứ giác \(AGCI\) là hình thoi.
Để tứ giác \(AGCI\) là hình vuông thì \(\widehat {AGC} = 90^\circ \).
Khi đó, tam giác \(ABC\) có \(\widehat {AGC} = 90^\circ \) nên tam giác \(ABC\) vuông cân tại \(A\).
Vậy để tứ giác \(AGCI\) là hình vuông thì tam giác \(ABC\) vuông cân tại \(A\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có \[3{x^2} - 6xy + 3{y^2} - 12{z^2}\]
\( = 3\left( {{x^2} - 2xy + {y^2} - 4{z^2}} \right)\)
\( = 3\left[ {{{\left( {x + y} \right)}^2} - {{\left( {2z} \right)}^2}} \right]\)
\( = 3\left( {x + y - 2z} \right)\left( {x + y + 2z} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.