Câu hỏi:

18/07/2025 113 Lưu

Đơn thức \[30{x^2}{y^3}\] chia hết cho đơn thức nào sau đây?

A. \[5{x^3}{y^2}\].

B. \[6{y^4}\].

C. \[60xy\].

D. \[30{x^4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Đơn thức \[30{x^2}{y^3}\] chia hết cho đơn thức \[60xy\] (vì số mũ ở mỗi biến của đơn thức \[30{x^2}{y^3}\] đều lớn hơn số mũ ở mỗi biến của đơn thức \[60xy\]).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

(0,5 điểm) Trong công viên có một dải đất nhỏ có dạng hình tam giác \[ABC\] được mô tả như hình vẽ bên. Giữa hai điểm \[P,{\rm{ }}Q\] là một hồ nước sâu và một con đường đi bộ giữa \[B\] và \ (ảnh 2)

Quãng đường bạn Hùng đi bộ là:

\(BC = 100 \cdot 3,6 = 360\,\,\left( {\rm{m}} \right).\)

Theo đề bài, \(PA = \frac{3}{5}PB\) hay \(\frac{{PA}}{{PB}} = \frac{3}{5}\) nên \(\frac{{PA}}{{AB}} = \frac{3}{8}.\)

Qua \[P\] vẽ đường thẳng song song với \[AC,\] cắt \[BC\] tại \[E.\]

Khi đó \(PE\,{\rm{//}}\,AC\) nên \(\frac{{EC}}{{BC}} = \frac{{PA}}{{AB}}\) (định lí Thalès).

Mà \[CE = PQ\] (do \[PQCE\] là hình bình hành) nên \(\frac{{PQ}}{{BC}} = \frac{{PA}}{{AB}}\).

Suy ra \(\frac{{PQ}}{{360}} = \frac{3}{8}\) nên \[PQ = 360 \cdot \frac{3}{8} = 135\,\,\left( {\rm{m}} \right).\]

Vậy độ dài \[PQ\] là \[135\,\,{\rm{m}}.\]

Lời giải

Hướng dẫn giải

Đáp số: 3.

Ta có \({x^3} + 27 + \left( {x + 3} \right)\left( {x - 9} \right) = 0\)

\(\left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right) + \left( {x + 3} \right)\left( {x - 9} \right) = 0\)

\(\left( {x + 3} \right)\left( {{x^2} - 3x + 9 + x - 9} \right) = 0\)

\(\left( {x + 3} \right)\left( {{x^2} - 2x} \right) = 0\)

\(\left( {x + 3} \right)x\left( {x - 2} \right) = 0\)

\(x + 3 = 0\) hoặc \(x = 0\) hoặc \(x - 2 = 0\)

\(x = - 3\) hoặc \(x = 0\) hoặc \(x = 2\)

Do đó \(x \in \left\{ { - 3\,;\,\,0\,;\,\,2} \right\}.\)

Vậy có 3 giá trị của \(x\) cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP