(1,0 điểm) Cho hình vuông \(ABCD\). Lấy \(E\) là điểm trên cạnh \(DC\,;\,\,F\) là điểm trên tia đối của tia \(BC\) sao cho \(BF = DE\). Gọi \(I\) là trung điểm của \(EF.\)
a) Chứng minh tam giác \(AEF\)vuông cân.
b) Lấy điểm \(K\) đối xứng với \(A\) qua \(I.\) Tứ giác \(AEKF\) là hình gì?
Quảng cáo
Trả lời:
Hướng dẫn giải
a)
Vì \(ABCD\) là hình vuông nên
\[\widehat {DAC} = \widehat {BAD} = \widehat {ABC} = \widehat {ABF} = 90^\circ \,;\,\,AD = AB.\]
Xét \(\Delta ADE\) và \(\Delta ABF\) có
\[\widehat {DAC} = \widehat {ABF} = 90^\circ \] (cmt); \(BF = DE\) (gt); \[AD = AB\] (cmt)
Do đó \(\Delta ADE = \Delta ABF\) (hai cạnh góc vuông).
Suy ra \(AE = AF\,;\,\,\widehat {DAE} = \widehat {BAF}\).
Ta có \[\widehat {DAE} + \widehat {EAB} = \widehat {BAD} = 90^\circ \] nên \[\widehat {FAB} + \widehat {EAB} = 90^\circ \] hay \[\widehat {EAF} = 90^\circ .\]
Xét tam giác \(AEF\) có \[\widehat {EAF} = 90^\circ \] và \(\widehat {DAE} = \widehat {BAF}\) nên tam giác \(AEF\)vuông cân.
b) Vì tam giác \(AEF\)vuông cân có \(AI\) là đường trung tuyến (vì \(I\) là trung điểm của \(EF\,)\) nên \(AI\) cũng là đường cao hay \(AI \bot EF.\)
Tam giác \(AEF\) vuông cân có \(AI\) là đường cao ứng với cạnh huyền \(EF\) nên \(AI = IE = IF = \frac{1}{2}EF.\)
Mặt khác, điểm \(K\) đối xứng với \(A\) qua \(I\) nên \(AI = IK.\)
Tứ giác \(AEKF\) có \(AI = IK = IE = IF\) nên \(AEKF\) là hình thoi.
Hình thoi \(AEKF\) có \[\widehat {EAF} = 90^\circ \] nên \(AEKF\) là hình vuông.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Quãng đường bạn Hùng đi bộ là:
\(BC = 100 \cdot 3,6 = 360\,\,\left( {\rm{m}} \right).\)
Theo đề bài, \(PA = \frac{3}{5}PB\) hay \(\frac{{PA}}{{PB}} = \frac{3}{5}\) nên \(\frac{{PA}}{{AB}} = \frac{3}{8}.\)
Qua \[P\] vẽ đường thẳng song song với \[AC,\] cắt \[BC\] tại \[E.\]
Khi đó \(PE\,{\rm{//}}\,AC\) nên \(\frac{{EC}}{{BC}} = \frac{{PA}}{{AB}}\) (định lí Thalès).
Mà \[CE = PQ\] (do \[PQCE\] là hình bình hành) nên \(\frac{{PQ}}{{BC}} = \frac{{PA}}{{AB}}\).
Suy ra \(\frac{{PQ}}{{360}} = \frac{3}{8}\) nên \[PQ = 360 \cdot \frac{3}{8} = 135\,\,\left( {\rm{m}} \right).\]
Vậy độ dài \[PQ\] là \[135\,\,{\rm{m}}.\]
Lời giải
Hướng dẫn giải
Đáp án:
a) Sai.
b) Đúng.
c) Đúng.
d) Sai.
⦁ Ta có \(M\) là trung điểm của \(BC\) và \(ME\parallel AC\) nên \(ME\) là đường trung bình của tam giác \(ABC\).
Do đó, \(E\) là trung điểm của \(AB.\)
Có \(M\) là trung điểm của \(BC\) và \(MF\parallel AB\) nên \(MF\) là đường trung bình của tam giác \(ABC\).
Do đó, \(F\) là trung điểm của cạnh \(AC\).
Như vậy \(E,F\) lần lượt là trung điểm của các cạnh \(AB,AC.\) Do đó ý a) đúng.
⦁ Vì \(E,F\) lần lượt là trung điểm của các cạnh \(AB,AC\) nên \(EF\) là đường trung bình của tam giác \(ABC.\)
Suy ra \(EF\,{\rm{//}}\,BC.\) Do đó ý b) đúng.
⦁ Ta có \(ME,MF\) là các đường trung bình của tam giác \(ABC\) nên \(ME = \frac{1}{2}AC,MF = \frac{1}{2}AB.\)
Mà tam giác \(ABC\) tại \(A\) nên \(AB = AC\).
Suy ra \(ME = MF\). Do đó ý c) đúng.
⦁ Ta có \(E,F\) là trung điểm của cạnh \(AB,AC\) nên \(AE = \frac{1}{2}AB;\,\,AF = \frac{1}{2}AC\).
Suy ra \(AE = AF.\) Do đó ý d) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.