(1,0 điểm) Cho hình vuông \(ABCD\). Lấy \(E\) là điểm trên cạnh \(DC\,;\,\,F\) là điểm trên tia đối của tia \(BC\) sao cho \(BF = DE\). Gọi \(I\) là trung điểm của \(EF.\)
a) Chứng minh tam giác \(AEF\)vuông cân.
b) Lấy điểm \(K\) đối xứng với \(A\) qua \(I.\) Tứ giác \(AEKF\) là hình gì?
Quảng cáo
Trả lời:
Hướng dẫn giải

a)
Vì \(ABCD\) là hình vuông nên
\[\widehat {DAC} = \widehat {BAD} = \widehat {ABC} = \widehat {ABF} = 90^\circ \,;\,\,AD = AB.\]
Xét \(\Delta ADE\) và \(\Delta ABF\) có
\[\widehat {DAC} = \widehat {ABF} = 90^\circ \] (cmt); \(BF = DE\) (gt); \[AD = AB\] (cmt)
Do đó \(\Delta ADE = \Delta ABF\) (hai cạnh góc vuông).
Suy ra \(AE = AF\,;\,\,\widehat {DAE} = \widehat {BAF}\).
Ta có \[\widehat {DAE} + \widehat {EAB} = \widehat {BAD} = 90^\circ \] nên \[\widehat {FAB} + \widehat {EAB} = 90^\circ \] hay \[\widehat {EAF} = 90^\circ .\]
Xét tam giác \(AEF\) có \[\widehat {EAF} = 90^\circ \] và \(\widehat {DAE} = \widehat {BAF}\) nên tam giác \(AEF\)vuông cân.
b) Vì tam giác \(AEF\)vuông cân có \(AI\) là đường trung tuyến (vì \(I\) là trung điểm của \(EF\,)\) nên \(AI\) cũng là đường cao hay \(AI \bot EF.\)
Tam giác \(AEF\) vuông cân có \(AI\) là đường cao ứng với cạnh huyền \(EF\) nên \(AI = IE = IF = \frac{1}{2}EF.\)
Mặt khác, điểm \(K\) đối xứng với \(A\) qua \(I\) nên \(AI = IK.\)
Tứ giác \(AEKF\) có \(AI = IK = IE = IF\) nên \(AEKF\) là hình thoi.
Hình thoi \(AEKF\) có \[\widehat {EAF} = 90^\circ \] nên \(AEKF\) là hình vuông.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
![(0,5 điểm) Trong công viên có một dải đất nhỏ có dạng hình tam giác \[ABC\] được mô tả như hình vẽ bên. Giữa hai điểm \[P,{\rm{ }}Q\] là một hồ nước sâu và một con đường đi bộ giữa \[B\] và \ (ảnh 2)](https://video.vietjack.com/upload2/images/1752812147/1752812209-image13.png)
Quãng đường bạn Hùng đi bộ là:
\(BC = 100 \cdot 3,6 = 360\,\,\left( {\rm{m}} \right).\)
Theo đề bài, \(PA = \frac{3}{5}PB\) hay \(\frac{{PA}}{{PB}} = \frac{3}{5}\) nên \(\frac{{PA}}{{AB}} = \frac{3}{8}.\)
Qua \[P\] vẽ đường thẳng song song với \[AC,\] cắt \[BC\] tại \[E.\]
Khi đó \(PE\,{\rm{//}}\,AC\) nên \(\frac{{EC}}{{BC}} = \frac{{PA}}{{AB}}\) (định lí Thalès).
Mà \[CE = PQ\] (do \[PQCE\] là hình bình hành) nên \(\frac{{PQ}}{{BC}} = \frac{{PA}}{{AB}}\).
Suy ra \(\frac{{PQ}}{{360}} = \frac{3}{8}\) nên \[PQ = 360 \cdot \frac{3}{8} = 135\,\,\left( {\rm{m}} \right).\]
Vậy độ dài \[PQ\] là \[135\,\,{\rm{m}}.\]
Lời giải
Hướng dẫn giải
Đáp số: 3.
Ta có \({x^3} + 27 + \left( {x + 3} \right)\left( {x - 9} \right) = 0\)
\(\left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right) + \left( {x + 3} \right)\left( {x - 9} \right) = 0\)
\(\left( {x + 3} \right)\left( {{x^2} - 3x + 9 + x - 9} \right) = 0\)
\(\left( {x + 3} \right)\left( {{x^2} - 2x} \right) = 0\)
\(\left( {x + 3} \right)x\left( {x - 2} \right) = 0\)
\(x + 3 = 0\) hoặc \(x = 0\) hoặc \(x - 2 = 0\)
\(x = - 3\) hoặc \(x = 0\) hoặc \(x = 2\)
Do đó \(x \in \left\{ { - 3\,;\,\,0\,;\,\,2} \right\}.\)
Vậy có 3 giá trị của \(x\) cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![(0,5 điểm) Trong công viên có một dải đất nhỏ có dạng hình tam giác \[ABC\] được mô tả như hình vẽ bên. Giữa hai điểm \[P,{\rm{ }}Q\] là một hồ nước sâu và một con đường đi bộ giữa \[B\] và \ (ảnh 1)](https://video.vietjack.com/upload2/images/1752812147/1752812209-image12.png)


