Câu hỏi:

18/07/2025 7 Lưu

Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét từng đáp án, ta có:

\({\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2}\) (bình phương của một tổng)

\({\left( {x + y} \right)^3} = {x^3} + 3{x^2}y + 3x{y^2} + {y^3}\) (lập phương của một tổng)

\({x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\) (hiệu hai lập phương)

\({\left( {x - y} \right)^3} = {x^3} - 3{x^2}y + 3x{y^2} - {y^3}\) (lập phương của một hiệu)

Do đó, đáp án A, B, C đúng và đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:

a) Đúng

b) Sai.

c) Sai.

d) Đúng.

Cho tam giác nhọn   A B C   có   A B < B C .   Từ trung điểm   M   của cạnh   A B   kẻ đường thẳng song song với   B C   cắt cạnh   A C   tại   N .   Trên cạnh   B C   lấy điểm   D   sao cho   B D = M N .   Kẻ đường cao   A H ( H ∈ B C )   của tam giác   A B C  .  a) Tứ giác   B M N D  là hình bình hành.  b) Tam giác   A M H   cân tại   A  .  c)   ˆ A M N = 2 3 ˆ H M N .    d) Tứ giác   D H M N   là hình thang cân. (ảnh 1)

⦁ Tứ giác \(BMND\) có: \[MN\parallel BD{\rm{ }}\left( {MN\parallel BC} \right)\]; \[MN = BD\] (gt).

Do đó, tứ giác \(BMND\)là hình bình hành. Do đó ý a) là đúng.

⦁ Vì \(\Delta {\rm{ }}ABH\) vuông tại \(H\,\,\left( {AH \bot BC} \right)\) có \(HM\) là trung tuyến nên \(HM = \frac{1}{2}AB\).

Mà \(MA = \frac{1}{2}AB\) suy ra \(MA = HM\).

Vậy \(\Delta {\rm{ }}AMH\) cân tại \[M\]. Do đó ý b) sai.

⦁ Tứ giác \(DHMN\) có \[MN\parallel DH{\rm{ }}\left( {MN\parallel BC} \right)\] nên tứ giác \(DHMN\) là hình thang.\(\left( 1 \right)\)

Ta có \(AH \bot BC\); \[MN\parallel BC\] nên \(AH \bot MN\).

Vì \(\Delta {\rm{ }}AMH\) cân tại \[M\] có \(AH \bot MN\) nên \(MN\) là phân giác của \(\Delta {\rm{ }}AMH\).

Do đó \(\widehat {AMN} = \widehat {HMN}.\) Do đó ý c) sai.

⦁ Tứ giác \(BMND\)là hình bình hành nên \[ND\parallel MB\].

Do đó \(\widehat {AMN} = \widehat {DNM}\)(so le trong) nên \(\widehat {HMN} = \widehat {DNM}\).\(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra tứ giác \(DHMN\) là hình thang cân. Do đó ý d) đúng.

Lời giải

Đáp án đúng là: C

Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:

\(A{C^2} = A{B^2} + B{C^2}\)

Suy ra \(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {{{12}^2} - {9^2}} = \sqrt {63} \) (km).

Chi phí làm đường ống từ \(B\) tới điểm \(C\) của công ty trên bằng tiền VNĐ là:

\(\sqrt {63} \cdot 5\,\,000 \cdot 26\,\,115 = 1\,\,036\,\,406\,\,932\) (đồng) \( \approx 1,036\) (tỉ đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP