Câu hỏi:

06/12/2025 117 Lưu

Cho biểu đồ sau:

Cho biểu đồ sau:Hỏi châu Mỹ chiếm bao nhiêu phần trăm tổng diện tích của cả sau châu lục đó? (ảnh 1)

Hỏi châu Mỹ chiếm bao nhiêu phần trăm tổng diện tích của cả sau châu lục đó?

A. \(20\% .\)

B. \(30\% .\)

C. \(28\% .\)

D. \(7\% .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Dựa vào biểu đồ, ta thấy Châu Mỹ chiếm 28% tổng diện tích của cả sáu châu lục đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:

a) Đúng

b) Sai.

c) Sai.

d) Đúng.

Cho tam giác nhọn   A B C   có   A B < B C .   Từ trung điểm   M   của cạnh   A B   kẻ đường thẳng song song với   B C   cắt cạnh   A C   tại   N .   Trên cạnh   B C   lấy điểm   D   sao cho   B D = M N .   Kẻ đường cao   A H ( H ∈ B C )   của tam giác   A B C  .  a) Tứ giác   B M N D  là hình bình hành.  b) Tam giác   A M H   cân tại   A  .  c)   ˆ A M N = 2 3 ˆ H M N .    d) Tứ giác   D H M N   là hình thang cân. (ảnh 1)

⦁ Tứ giác \(BMND\) có: \[MN\parallel BD{\rm{ }}\left( {MN\parallel BC} \right)\]; \[MN = BD\] (gt).

Do đó, tứ giác \(BMND\)là hình bình hành. Do đó ý a) là đúng.

⦁ Vì \(\Delta {\rm{ }}ABH\) vuông tại \(H\,\,\left( {AH \bot BC} \right)\) có \(HM\) là trung tuyến nên \(HM = \frac{1}{2}AB\).

Mà \(MA = \frac{1}{2}AB\) suy ra \(MA = HM\).

Vậy \(\Delta {\rm{ }}AMH\) cân tại \[M\]. Do đó ý b) sai.

⦁ Tứ giác \(DHMN\) có \[MN\parallel DH{\rm{ }}\left( {MN\parallel BC} \right)\] nên tứ giác \(DHMN\) là hình thang.\(\left( 1 \right)\)

Ta có \(AH \bot BC\); \[MN\parallel BC\] nên \(AH \bot MN\).

Vì \(\Delta {\rm{ }}AMH\) cân tại \[M\] có \(AH \bot MN\) nên \(MN\) là phân giác của \(\Delta {\rm{ }}AMH\).

Do đó \(\widehat {AMN} = \widehat {HMN}.\) Do đó ý c) sai.

⦁ Tứ giác \(BMND\)là hình bình hành nên \[ND\parallel MB\].

Do đó \(\widehat {AMN} = \widehat {DNM}\)(so le trong) nên \(\widehat {HMN} = \widehat {DNM}\).\(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra tứ giác \(DHMN\) là hình thang cân. Do đó ý d) đúng.

Lời giải

Đáp án đúng là: C

Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:

\(A{C^2} = A{B^2} + B{C^2}\)

Suy ra \(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {{{12}^2} - {9^2}} = \sqrt {63} \) (km).

Chi phí làm đường ống từ \(B\) tới điểm \(C\) của công ty trên bằng tiền VNĐ là:

\(\sqrt {63} \cdot 5\,\,000 \cdot 26\,\,115 = 1\,\,036\,\,406\,\,932\) (đồng) \( \approx 1,036\) (tỉ đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP