Câu hỏi:

18/07/2025 11 Lưu

Cho đa thức \(U = \left( {10{x^5}{y^3} - 25{x^3}{y^2} + 20{x^4}{y^3}} \right):\left( { - 5{x^2}{y^2}} \right)\) và \(V = 2{x^2}y\left( {x + 2} \right)\).

a) Hệ số cao nhất của của đa thức \(U\) là 5.

b) Giá trị của biểu thức \(U\) tại \(x = - 1\,;\,\,y = 2\) là 10.

c) Bậc của đa thức \(V\) là 4.

d) Tổng của hai đa thức \(U\) và \(V\) chia hết cho 5.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án:

a) Sai.

b) Sai.

c) Đúng.

d) Đúng.

⦁ Ta có \(U = \left( {10{x^5}{y^3} - 25{x^3}{y^2} + 20{x^4}{y^3}} \right):\left( { - 5{x^2}{y^2}} \right)\)

\[ = 10{x^5}{y^3}:\left( { - 5{x^2}{y^2}} \right) - 25{x^3}{y^2}:\left( { - 5{x^2}{y^2}} \right) + 20{x^4}{y^3}:\left( { - 5{x^2}{y^2}} \right)\]

\[ = - 2{x^3}y + 5x - 4{x^2}y\].

Khi đó, hệ số cao nhất của của đa thức \(U\) là \[ - 2\]. Do đó ý a) sai.

⦁ Thay \(x = - 1\,;\,\,y = 2\) vào biểu thức \(U\), ta có:

\(U = 2 \cdot {\left( { - 1} \right)^3} \cdot 2 + 5 \cdot \left( { - 1} \right) - 4 \cdot {\left( { - 1} \right)^2} \cdot 2 = - 4 - 5 - 8 = - 10.\)

Như vậy với \(x = - 1\,;\,\,y = 2\) thì \(U = - 10\). Do đó ý b) sai.

⦁ Ta có \(V = 2{x^2}y\left( {x + 2} \right)\)\( = 2{x^2}y \cdot x + 2{x^2}y \cdot 2\)\( = 2{x^3}y + 4{x^2}y\).

Khi đó, bậc của đa thức \(V\) là 4. Do đó ý c) đúng.

⦁ Ta có \[U + V = \left( { - 2{x^3}y + 5x - 4{x^2}y} \right) + \left( {2{x^3}y + 4{x^2}y} \right)\]

\[ = \left( { - 2{x^3}y + 2{x^3}y} \right) + 5x + \left( { - 4{x^2}y + 4{x^2}y} \right) = 5x.\]

\[ = \left( { - 2{x^3}y + 2{x^3}y} \right) + 5x + \left( { - 4{x^2}y + 4{x^2}y} \right) = 5x\].

Vì \[5x\,\, \vdots \,\,5\] nên \(\left( {U + V} \right)\,\, \vdots \,\,5\).

Như vậy, tổng của hai đa thức \(U\) và \(V\) chia hết cho 5. Do đó ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: \[{\bf{1}},{\bf{45}}\].

Nửa chu vi đáy của kho chứa là: \[\left( {6 \cdot \;4} \right):2 = 12\,\,\left( {\rm{m}} \right).\]

Diện tích xung quanh của kho chứa là: \[12 \cdot 3 = 36{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right).\]

Diện tích cần sơn phủ là: \[36 - 7 = 29{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right).\]

Số tiền cần trả để hoàn thành việc sơn phủ là:

\[29 \cdot 50{\rm{ }}000 = 1\,\,450\,\,000\] (đồng) \[ = 1,45\] (triệu đồng).

Vậy số tiền cần trả để hoàn thành việc sơn phủ đó \[1,45\] triệu đồng.

Lời giải

Hướng dẫn giải

Đáp án:

a) Sai.

b) Đúng.

c) Sai.

d) Đúng.

Cho tam giác   A B C   vuông tại   A  . Gọi   M   là một điểm bất kì trên cạnh huyền   B C  . Gọi   D   và   E   lần lượt là chân đường vuông góc kẻ từ   M   xuống   A B   và   A C .   Lấy điểm   I   sao cho   A   là trung điểm của   I D  ; điểm   K   sao cho   M   là trung điểm của   E K  .  a)   I A = I D ; K M = K E .    b) Tứ giác   A D M E   là hình chữ nhật.  c) Tứ giác   A D M C   là hình thang cân.  d)   D K / / E I  . (ảnh 1)

⦁ Khi lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).

Suy ra \(AI = AD\,;\,\,MK = ME.\) Do đó ý a) là sai.

⦁ Xét tứ giác \(ADME\) có:

\(\widehat {DAE} = 90^\circ \) (vì \(\Delta ABC\) vuông tại \(A\))

\(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\)

\(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\)

Do đó tứ giác \(ADME\) là hình chữ nhật. Do đó ý b) đúng.

⦁ Vì \(AB \bot AC\) (vì \(\Delta ABC\) vuông tại \(A\)); \(MD \bot AB\) nên \(MD\,{\rm{//}}\,AC.\)

Tứ giác \(ADMC\) có \(MD\,{\rm{//}}\,AC\) nên \(ADMC\) là hình thang.

Hình thang \(ADMC\) có \(\widehat {CAD} = 90^\circ \) nên \(ADMC\) là hình thang vuông. Do đó ý c) sai.

⦁ Vì \(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).

Mà \(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]

Suy ra \(DIEK\) là hình bình hành.

Do đó \(DK\,{\rm{//}}\,EI\). Do đó ý d) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP