Cho đa thức \(U = \left( {10{x^5}{y^3} - 25{x^3}{y^2} + 20{x^4}{y^3}} \right):\left( { - 5{x^2}{y^2}} \right)\) và \(V = 2{x^2}y\left( {x + 2} \right)\).
a) Hệ số cao nhất của của đa thức \(U\) là 5.
b) Giá trị của biểu thức \(U\) tại \(x = - 1\,;\,\,y = 2\) là 10.
c) Bậc của đa thức \(V\) là 4.
d) Tổng của hai đa thức \(U\) và \(V\) chia hết cho 5.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án:
a) Sai.
b) Sai.
c) Đúng.
d) Đúng.
⦁ Ta có \(U = \left( {10{x^5}{y^3} - 25{x^3}{y^2} + 20{x^4}{y^3}} \right):\left( { - 5{x^2}{y^2}} \right)\)
\[ = 10{x^5}{y^3}:\left( { - 5{x^2}{y^2}} \right) - 25{x^3}{y^2}:\left( { - 5{x^2}{y^2}} \right) + 20{x^4}{y^3}:\left( { - 5{x^2}{y^2}} \right)\]
\[ = - 2{x^3}y + 5x - 4{x^2}y\].
Khi đó, hệ số cao nhất của của đa thức \(U\) là \[ - 2\]. Do đó ý a) sai.
⦁ Thay \(x = - 1\,;\,\,y = 2\) vào biểu thức \(U\), ta có:
\(U = - 2 \cdot {\left( { - 1} \right)^3} \cdot 2 + 5 \cdot \left( { - 1} \right) - 4 \cdot {\left( { - 1} \right)^2} \cdot 2 = 4 - 5 - 8 = - 9.\)
Như vậy với \(x = - 1\,;\,\,y = 2\) thì \(U = - 9\). Do đó ý b) sai.
⦁ Ta có \(V = 2{x^2}y\left( {x + 2} \right)\)\( = 2{x^2}y \cdot x + 2{x^2}y \cdot 2\)\( = 2{x^3}y + 4{x^2}y\).
Khi đó, bậc của đa thức \(V\) là 4. Do đó ý c) đúng.
⦁ Ta có \[U + V = \left( { - 2{x^3}y + 5x - 4{x^2}y} \right) + \left( {2{x^3}y + 4{x^2}y} \right)\]
\[ = \left( { - 2{x^3}y + 2{x^3}y} \right) + 5x + \left( { - 4{x^2}y + 4{x^2}y} \right) = 5x.\]
Vì \[5x\,\, \vdots \,\,5\] nên \(\left( {U + V} \right)\,\, \vdots \,\,5\).
Như vậy, tổng của hai đa thức \(U\) và \(V\) chia hết cho 5. Do đó ý d) đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: \[ - {\bf{8}}\].
Ta có \[T = \left( {{x^2} - 6x + 12} \right)\left( {x - 6} \right) - {\left( {x - 4} \right)^3}\]
\[ = {x^3} - 6{x^2} + 12x - 6{x^2} + 36x - 72 - \left( {{x^3} - 12{x^2} + 48x - 64} \right)\]
\[ = {x^3} - 12{x^2} + 48x - 72 - {x^3} + 12{x^2} - 48x + 64\]
\( = \left( {{x^3} - {x^3}} \right) + \left( {12{x^2} - 12{x^2}} \right) + \left( {48x - 48x} \right) + \left( {64 - 72} \right)\)\( = - 8\).
Vậy \(T = - 8.\)
Lời giải
Hướng dẫn giải
Ta có \({a^2} + {b^2} + {c^2} = ab + bc + ca\)
\(2{a^2} + 2{b^2} + 2{c^2} = 2ab + 2bc + 2ca\)
\(2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0\)
\(\left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ac + {a^2}} \right) = 0\)
\({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} = 0\) (*)
Với mọi \(a,\,\,b,\,\,c \in \mathbb{R}\), ta có: \({\left( {a - b} \right)^2} \ge 0\,;\,\,\,{\left( {b - c} \right)^2} \ge 0\,;\,\,{\left( {c - a} \right)^2} \ge 0\).
Khi đó, \({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\).
Do đó để (*) xảy ra thì \[\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = 0\\{\left( {b - c} \right)^2} = 0\\{\left( {c - a} \right)^2} = 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}a - b = 0\\b - c = 0\\c - a = 0\end{array} \right.\] tức là \[\left\{ \begin{array}{l}a = b\\b = c\\c = a\end{array} \right.\].
Khi đó \[a = b = c\] và \(a + b + c = 2025\)
Do đó \[a = b = c = \frac{{2\,\,025}}{3} = 675.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Một kho chứa có dạng hình chóp tứ giác đều với độ dài cạnh đáy là 6 m và trung đoạn là \[3{\rm{ m}}.\] Người ta muốn sơn phủ bên ngoài cả ba mặt xung quanh của kho chứa đó và không sơn phủ p (ảnh 1)](https://video.vietjack.com/upload2/images/1752817036/1752817098-image6.png)
