Câu hỏi:

19/07/2025 41 Lưu

Hàm số nào sau đây có tập xác định là \(\mathbb{R}\)?

A. \(y = \frac{{2\sqrt x }}{{{x^2} + 4}}\).

B. \(y = {x^2} - \sqrt {{x^2} + 1}  - 3\).

C. \(y = \frac{{3x}}{{{x^2} - 4}}\).

D. \(y = {x^2} - 2\sqrt {x - 1}  - 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\(y = \frac{{2\sqrt x }}{{{x^2} + 4}}\) có tập xác định là \(\left( {0;\,\, + \infty } \right)\).

\(y = \frac{{3x}}{{{x^2} - 4}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { - 2;\,\,2} \right\}\). \(y = {x^2} - 2\sqrt {x - 1}  - 3\) có tập xác định là \(\left[ {1;\,\, + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có y=3x+5x14=3x+54x1x1=x+9x1.
Điều kiện xác định: x10x+9x10x+90x1>0x+90x1<0x9x>1  TMx9x<1  L1<x9

Suy ra tập xác định của hàm số là \(D = \left( {1;9} \right]\).

Vậy \(a = 1,\,b = 9 \Rightarrow a + b = 10.\)

Đáp án: \(10\).

Lời giải

Đáp án đúng là: B

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm hay \(\Delta ' = m + 4 < 0 \Leftrightarrow m <  - 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP